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Lecture 9: Robust statistics I: Motivation, Iterative
filtering

While the last unit on sum-of-squares algorithms provided strong mathematical
guarantees for various estimation tasks, this unit on robust statistics brings us closer
to more practical implementations along with the theoretical guarantees.

1 Introduction

The general set-up for robust statistics problems is as follows: We get “corrupted”
samples from an unknown distribution q and the goal is to perform various statisti-
cal inference tasks with strong guarantees that are competitive with respect to the
setting where no samples were corrupted (or a setting where we know which sam-
ples were corrupted). There are four broad ways of modelling corruptions based
on how “powerful” the adversary is. There are two axes to determine this: oblivous
vs adaptive and additive vs non-additive. An adversary is said to be oblivious if the
bad points are independent of the good points and is said to be adaptive otherwise.
It is said to be additive if the good points are i.i.d. draws from q and non-additive
otherwise. These notions lead to the following four types of corruption models:

• Huber contamination: Adversary fixes a distribution padv and we get n

i.i.d. samples from the mixture (1− η) · q + η · padv.

• Additive-η contamination: Nature draws x∗
1, x

∗
2, . . . , x

∗
(1−η)n ∼ q i.i.d. Adver-

sary inspects these, adds η · n arbitrary points to the dataset, and shuffles the
dataset arbitrarily. We get the corrupted dataset.

• TV contamination: Adversary picks any distribution q′ such that TV (q, q′) ≤
η and we get n i.i.d. samples from q′. Here TV (., .) denotes the total variation
distance between the two distributions.

• Strong contamination: Nature draws x∗
1, x

∗
2, . . . , x

∗
n ∼ q i.i.d. Adversary

inspects these points, picks a subset of size η · n and corrupts those points
arbitrarily. We get the corrupted dataset.

Table 1 classifies which of the above models are oblivious and/or additive. Note
that as we move to the right and/or to the bottom cell in the table, we are moving
to a more general model of contamination.
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Oblivious Adaptive
Additive Huber Additive-η

Non-additive TV Strong

Table 1: Contamination models

In this lecture, we consider the robust mean estimation problem as studied by
Huber [Hub92], although we actually provide an algorithm for the strong contami-
nation model.

Parameters: Unknown mean µ ∈ Rd and (known) corruption fraction η.
Given: Corrupted samples x1, x2, . . . , xn from N (µ, Id) under the strong contami-
nation model.
Goal: Estimate µ “as best as possible”.

But what is “as best as possible”? Consider ν such that ∥ν − µ∥2 = η. Then
one can show that TV (N (µ, 1),N (ν, 1)) = Θ(η), so it is impossible to distinguish
whether our data is just i.i.d. samples from N (ν, 1) or whether it was obtained by
TV-contaminating samples from N (µ, 1). Therefore, we cannot hope to estimate the
mean to error less than O(η).

When d = 1, there are various approaches to achieving error O(η), e.g., median,
trimmed mean and Huber M-estimation. However, when d is large, trimming-
based and M-estimation based algorithms will suffer additional poly(d) factors in
the error. The high-dimensional (Tukey) median does not, but it is computationally
inefficient.

Recently, Diakonikolas et al. [DKK+16] proved that there exists a polynomial
time algorithm for robustly estimating the mean of a Gaussian , even under strong
contamination.

Theorem 1 (see Theorem 1.2 of [DKK+16] for a formal statement). There is a (prac-
tical) polynomial-time algorithm for robustly estimating the parameters of a Gaussian
N (µ,Σ), even under strong contamination, to error Õ(η).

We will prove the above theorem (although we only show a weaker bound on
the error) based on a technique called iterative filtering.
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2 Robust mean estimation

2.1 Setup

Suppose q is a distribution over Rd with with mean µ ∈ Rd and covariance matrix
Σ ⪯ Id. Let x∗

1, x
∗
2, . . . , x

∗
n ∼ q be i.i.d. draws sampled by nature. Suppose an

adversary corrupts an arbitrary η (small constant) fraction of these points and we
are given the corrupted samples {x1, x2, . . . , xn}.

Now let
{x1, x2, . . . , xn} = Sg ∪ Sb \ Sr,

where |Sb| = |Sr| = ηn, Sg = {x∗
1, x

∗
2, . . . , x

∗
n} are the (“good”) original draws from

q, Sr are the points which were corrupted and Sb are the points they have been
replaced with by the adversary. As shorthand notation, we use

∑
clean i xi to refer to∑

x∈Sg\Sr
x and

∑
bad i xi to refer to

∑
x∈Sb

x.
Assume (by considering large enough n) that for µg ≜ 1

|Sg |
∑

x∈Sg
x and Σg ≜

1
|Sg |

∑
x∈Sg

(x− µg)(x− µg)
⊤, we have

∥µg − µ∥2 ≲
√
ϵ and (1)

∥Σg∥op ≲ 1. (2)

2.2 Motivating the algorithm

The starting point of the algorithm is to maintain (and keep updating) weights
w = {wi}i∈[n] for the dataset that indicate how confident we are that xi is clean for
i ∈ [n]. That is, let

0 ≤ wi ≤
1

n
, for all i ∈ [n]. (3)

Note. Here wi is like 1
n
ai where ai is from the SoS analysis. But these are actual real

numbers now and not SoS variables. Ideally we would want wi =
1
n
· 1[i ∈ Sg].

Define the weighted mean and weighted covariance by

µw ≜
1∑
iwi

∑
i

wixi and (4)

Σw ≜
1∑
i wi

∑
i

wi(xi − µw)(xi − µw)
⊤. (5)
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In general, wi’s can be viewed as “soft” indicators for a subset. We want to pick
out a large subset of clean points, so we care about wi’s that satisfy

∑
i

wi ≥ 1− η. (6)

Note that the set of w ∈ Rd satisfying (3) and 6 is a convex hull Kη of the set
{ 1
n
·1S : S ⊆ [n] such that |S| ≥ (1−η)n}. We will maintain that w ∈ Kη throughout

the algorithm. 1

We now state a lemma that will be important in arguing the correctness of the
algorithm (which we defer to Algorithm 1). Informally, the above lemma states that
if µw is a “wrong” estimate for the mean, then ∥Σw∥op is “large”.

Lemma 1 (Spectral signature lemma). For any w ∈ Kη,

∥µg − µw∥2 ≲
√
η ·

(
1 +

√
∥Σw∥op

)
.

We defer the proof of the lemma for now, but instead look at how to use it to
come up with a robust mean estimation algorithm. Given current weights w, we
define scores

τi ≜ ⟨v, xi − µw⟩2,

where v is the top eigenvector of Σw. Let τmax ≜ maxi:wi>0 τi. Intuitively,

higher score τi ⇐⇒ more likely that xi is a corrupted sample

since the clean samples (projected to v) would be “close” to the mean.
The above intuition leads to the following algorithm (take note of the update

rule for weights: we are decreasing the weights for samples with large τi).

2.3 The algorithm: Iterative filtering

Let C ≥ 1 be a small constant that we are going to fix later.

1This ends up being K2η in the final proof.
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Algorithm 1: ROBUST MEAN ESTIMATION ALGORITHM

1 wi ← 1
n

2 while ∥Σw∥op ≥ C do
3 v ← top eigenvector of Σw

4 τi ← ⟨v, xi − µw⟩2, ∀i ∈ [n]

5 τmax ← maxi:wi>0 τi
6 w′

i ← wi(1− τi/τmax)

7 end
8 Output µw

To prove correctness and efficiency, we will first show that the update rule
satisfies two useful properties: “safety condition” and “progress condition”.

Lemma 2. Consider the update rule in Algorithm 1:

w′
i ← wi(1− τi/τmax).

If
∑

clean i wiτi <
∑

bad i wiτi, then

• (safety condition)
∑

clean i(wi − w′
i) <

∑
bad i(wi − w′

i) i.e., the update removes
more “bad mass” than “good mass”, and

• (progress condition) nnz(w′) < nnz(w), where nnz(.) denotes the number of
non-zero entries.

Proof. The progress condition is immediate from the definition of τmax. Note that the
safety condition follows by the following lemma (which we prove later):

Lemma 3. Suppose ∥Σw∥op ≥ C. Then
∑

clean i wiτi <
∑

bad i wiτi.

This is because we have wi − w′
i = wiτi/τmax for all i ∈ [n]. (Lemma 2)

As the initial weights of the algorithm were all 1/n, the safety condition implies
the following invariant during the run of the algorithm:∑

clean i

(
1

n
− wi

)
<

∑
bad i

(
1

n
− wi

)
(INV)

Note that it is apriori not clear how long the while-loop in Algorithm 1 runs.
However, we can easily bound the number of iterations/updates:

Observation 1. If (INV) is always maintained, then the (while-loop of) Algorithm 1 runs
for at most 2ηn iterations.
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Proof. Suppose that the algorithm runs for more than 2ηn iterations. Then, we will
show that (INV) gets violated in the 2ηn-th iteration: In each iteration, the total
mass gets reduced by at least

∑
iwiτi/τmax ≥ 1/n. (this is similar to the analysis

in the proof of Lemma 3). Hence, we will have removed at least 2η mass in total.
By (INV), this implies that at least η mass has been removed from bad points. Since
there are only ηn bad points, the initial bad mass is η. Hence,

∑
bad i = 0 by the

2ηn-th iteration. Since (INV) should also be maintained at this point but there is
no bad mass left, we conclude that the algorithm must terminate now, if it hasn’t
already.

We now state two more observations.

Observation 2. If ∥Σw∥op ≲ C, it is safe to output µw, i.e., ∥µg − µw∥ ≲ O(
√
η).

The above observation follows directly from the spectral signature lemma.

Observation 3. If (INV) is always maintained, then w ∈ K2η.

Proof. We have ∑
clean i

(
1

n
− wi

)
<

∑
bad i

(
1

n
− wi

)
≤ η,

so
∑

all iwi > 1− 2η.

Note that Observation 2 immediately implies the desired error bound on the
estimated mean of Algorithm 1. By Observation 1, we see that the number of
iterations of the algorithm is also small i.e., 2ηn.

We will now finish with a proof of Lemma 3.

Proof of Lemma 3. Note∑
all i

wiτi =
∑
i

wi⟨v, xi − µw⟩2

= v⊤
(∑

i

wi(xi − µw)(xi − µw)
⊤
)
v

= v⊤Σwv = ∥Σw∥op.

Hence, it suffices to show that
∑

clean i wiτi <
1
2
∥Σw∥op.
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We have∑
clean i

wiτi ≤
1

n

∑
x∈Sg

⟨v, x− µw⟩2 (as each wi ≤ 1/n)

=
1

n

∑
x∈Sg

(
⟨v, x− µg⟩+ ⟨v, µg − µw⟩

)2

≤ 2

n

∑
x∈Sg

⟨v, x− µg⟩2︸ ︷︷ ︸
A

+
2

n

∑
x∈Sg

⟨v, µg − µw⟩2︸ ︷︷ ︸
B

. (using (a+ b)2 ≤ 2(a2 + b2))

Now we bound A and B separately:

A ≤ 2v⊤
(

1

|Sg|
∑
x∈Sg

(x− µg)(x− µg)
⊤
)
v ≲ 2, (by assumption (2) from Setup)

and

B ≤ 2⟨v, µg − µw⟩2

≤ 2∥µg − µw∥2

≤ √η ·
(
1 +

√
∥Σw∥op

)
. (by the spectral signature lemma (Lemma 1))

Hence, provided η is a sufficiently small constant, if ∥Σw∥op ≥ C for a sufficiently
large constant C, we get that

A+B ≤ 2 +O

(
√
η ·

(
1 +

√
∥Σw∥op

))
<

1

2
∥Σw∥op,

where the last inequality follows from the fact that the LHS is a linear function of√
∥Σop∥, while the RHS is quadratic and hence dominates the LHS for sufficiently

large C (note that the choice of C gets closer to 1 as η gets smaller).
Therefore,

∑
clean i wiτi <

1
2
∥Σw∥op.

This concludes the analysis of run-time and correctness of the robust mean
estimation algorithm based on iterative filtering (assuming the spectral signature
lemma).
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