Lecture 7: Sum-of-squares Application: Tensor Decomposition

1 Continuation of Lecture 6

Recall from last lecture we want to learn a mixture of Gaussians. [HL18, KS17]. We have d-dimensional samples

$$
x_{1}, \ldots, x_{n} \sim q, \quad \text { where } \quad q:=\frac{1}{k} \sum_{j=1}^{k} \mathcal{N}\left(\mu_{j}, I d_{d}\right)
$$

In order to learn the centers μ_{j} of these Gaussians, we designed a sum of square (SoS) program. See [Hop18] for a collection of blog posts on the SoS method. This program is designed to simulate the inefficient algorithm of brute-force constructing subsets S of appropriate size $N=n / k$ to find some subset of the data that "looks like" a Gaussian.

Set up our SoS program:

- Variables:

$$
a_{1}, \ldots, a_{n}, \mu
$$

where $a_{i}=1$ if we believe point i came from the component and 0 otherwise; μ is our final estimate for what the mean of that component is.
We also define the following quantity:

$$
\begin{equation*}
c_{j}:=\frac{\left|S \cap S_{j}\right|}{N}=\frac{\sum_{i \in S_{j}} a_{i}}{N} \in[0,1] \tag{1}
\end{equation*}
$$

this can be interpreted as the (normalized) overlap between S, the set of points we found, and S_{j}, the set of points in the j th component. Notice that $c_{j}=1$ means we have learned the component perfectly.

- Constraints:

- $a_{i}^{2}=a_{i} \quad$ (ensures a_{i} s are just Boolean indicator variables)
- $\sum_{i} a_{i}=N \quad$ (ensures we select exactly $N=\frac{n}{k}$ points for the component estimate)
- $\mu=\frac{1}{N} \sum_{i=1}^{n} a_{i} x_{i}$
$-\frac{1}{N} \sum_{i=1} a_{i}\left\langle x_{i}-\mu, u\right\rangle^{t} \leq 2 t^{t / 2}, \quad \forall u$
Notice that the last constraint says, for the points I picked out, if I look at the projection in any direction u, the empirical t th moment of the data I picked out, should look like the empirical t th moment of a Gaussian (i.e., $\left.\underset{g \sim \mathcal{N}(0,1)}{\mathbb{E}}\left[g^{t}\right]=(t-1)!\leq t^{t / 2}\right)$, namely it should have the above bound)
- Objective (Max Entropy):

$$
\min _{\tilde{\mathbb{E}}}\left\|\tilde{\mathbb{E}}\left[a a^{T}\right]\right\|_{F}
$$

we want to minimize over pseudo-distributions over solutions to this polynomial system where $a=\left(a_{1}, . ., a_{n}\right)$.

Recall in the last lecture, under sum of squares, we showed that:

$$
\sum_{j=1}^{k} c_{j}^{2} \geq 1-o(1)
$$

In addition, we know that $\sum c_{j}=1$. Using these the fact that $\sum c_{j}=1$ and the sum of squares of c_{j} s are close to 1, which implies one of the $c_{j} \mathrm{~s}$ is close to 1 .

1.1 Motivation for Max Entropy

First Example: Let's pretend that $\widetilde{\mathbb{E}}$ is actually a real distribution - in fact, a deterministic distribution:

$$
\begin{equation*}
a_{i}=\mathbb{I}\left[x_{i} \text { came from component } j\right] \tag{2}
\end{equation*}
$$

Then

$$
\widetilde{\mathbb{E}}\left[a a^{\top}\right]=a a^{\top}
$$

For example, suppose $a=(1,0,1,0,0,1)$, then:

$$
a a^{T}=\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Since a can only pick out N points, this will be an $N \times N$ submatrix of 1's.

$$
\Longrightarrow\left\|\widetilde{\mathbb{E}}\left[a a^{\top}\right]\right\|_{F}^{2}=N^{2}
$$

Second Example: Pretend $\widetilde{\mathbb{E}}$ is actually a real distribution, but there is some randomness. Indeed, we'll sample $j \sim[k]$ and keep the definition of a_{i} above in Equation 2. Let $a_{i}^{(j)}=\mathbb{I}\left[x_{i}\right.$ came from component $\left.j\right]$.

$$
\widetilde{\mathbb{E}}\left[a a^{\top}\right]=\mathbb{E}_{j}\left[a^{(j)}\left(a^{(j)}\right)^{\top}\right]=\frac{1}{k}[\underbrace{\binom{\ldots}{\cdots}}_{j=1}+\underbrace{\left(\begin{array}{l}
\ldots \\
\end{array}\right)}_{j=2}+\cdots
$$

This will result in a matrix with $N \times N$ blocks with only $1 / k$ values, where this matrix tells us if any 2 points i, i^{\prime} are in the same cluster.

After permutation, we obtain a block-diagonal matrix that shows incidence of points in each component. We get:

$$
\left\|\widetilde{\mathbb{E}}\left[a a^{\top}\right]\right\|_{F}^{2}=k \cdot N^{2} \cdot \frac{1}{k^{2}}=\frac{N^{2}}{k}
$$

1.2 Lemma to Motivate Algorithm

Lemma 1. For $\widetilde{\mathbb{E}}$ optimizing the SoS program:

$$
\left\|\widetilde{\mathbb{E}}\left[a a^{\top}\right]-\mathbb{E}_{j}\left[a^{(j)}\left(a^{(j)}\right)^{\top}\right]\right\|_{F}^{2} \quad \text { is small. }
$$

Proof. Let $\tilde{M}=\widetilde{\mathbb{E}}\left[a a^{\top}\right]$ and $M=\mathbb{E}_{j}\left[a^{(j)}\left(a^{(j)}\right)^{\top}\right]$

$$
\begin{gathered}
\|\tilde{M}-M\|_{F}^{2}=\|\widetilde{M}\|_{F}^{2}+\|M\|_{F}^{2}-2\langle\widetilde{M}, M\rangle \\
\leq\|M\|_{F}^{2}+\frac{N^{2}}{k}-2\langle\widetilde{M}, M\rangle \\
=\frac{2 N^{2}}{k}-2\langle\widetilde{M}, M\rangle
\end{gathered}
$$

Now notice,

$$
\begin{aligned}
\langle\widetilde{M}, M\rangle & =\left\langle\widetilde{\mathbb{E}}\left[a a^{\top}\right], \mathbb{E}_{j}\left[a^{(j)}\left(a^{(j)}\right)^{\top}\right]\right\rangle \\
& =\widetilde{\mathbb{E}} \mathbb{E}_{j}\left[\left\langle a, a^{(j)}\right\rangle^{2}\right]
\end{aligned}
$$

and recall from Equation 1 .

$$
\left\langle a, a_{j}\right\rangle=\sum_{i \in S_{j}} a_{i}=N \cdot c_{j}
$$

Plugging in $\mathbb{E}_{j}\left[\left\langle a, a^{(j)}\right\rangle^{2}\right]=\frac{1}{k} \sum_{j=1}^{k}\left(N c_{j}\right)^{2}:$

$$
\begin{gathered}
\langle\widetilde{M}, M\rangle=\widetilde{\mathbb{E}} \frac{1}{k} \sum_{j=1}^{k}\left(N c_{j}\right)^{2} \\
=\frac{N^{2}}{k} \widetilde{\mathbb{E}} \sum_{j=1}^{k} c_{j}^{2}=\frac{N^{2}}{k}(1-o(1)) \\
\Longrightarrow\|\tilde{M}-M\|_{F}^{2} \leq \frac{2 N^{2}}{k} o(1) \quad \text { which is sufficiently small. }
\end{gathered}
$$

1.3 Algorithm

1. Solve for $\widetilde{\mathbb{E}}$ (run optimization problem).
2. Compute $\widetilde{\mathbb{E}}\left[a a^{\top}\right]$.
3. Read off the clustering structure from $\widetilde{\mathbb{E}}\left[a a^{\top}\right]$ (i.e., which points are in the same cluster j).
4. Compute empirical means of the clusters we have found.

2 SoS for Tensor Decomposition

In the first unit of this class, we tackled the problem of decomposing a tensor into the sum of rank- 1 tensors. We'll consider here the same problem, albeit when the tensor we have access to is a highly noisy version of the true tensor.

Indeed, we'll suppose the following setting. Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be orthonormal vectors. We have access to a tensor

$$
T=\underbrace{\sum_{i=1}^{k} u_{i}^{\otimes 3}}_{\text {signal }}+\underbrace{E}_{\text {noise }}
$$

where E is a noise tensor.

2.1 Aside: How do we quantify the "size" of a tensor?

Consider the following two norms, analogous to the Frobenius and operator norms over linear operators:

- The Frobenius norm:

$$
\|T\|_{F}=\sqrt{\sum_{i, j, k} T_{i j k}^{2}}
$$

- The injective tensor norm:

$$
\|T\|_{\mathrm{inj}}=\max _{\|x\|=1}\left\langle T, x^{\otimes 3}\right\rangle
$$

for symmetric tensor T. Note that there is no need for an absolute value within the maximum, since we may just as well take x to be $-x$. However, this norm is NP-hard to compute - even approximately to within a factor of $n^{o(1)}$.

There exists a convenient relationship between these two norms:
Lemma 2. $\|T\|_{F} \geq\|T\|_{i n j}$
Proof. We'll employ a degree-6 SoS proof (since the terms involve polynomials of degree at most 6). For any $x \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\left\langle T, x^{\otimes 3}\right\rangle^{2} & =\left(\sum_{i, j, k} T_{i j k} x_{i} x_{j} x_{k}\right)^{2} \\
& \leq\left(\sum_{i, j, k} T_{i j k}^{2}\right) \cdot\left(\sum_{i, j, k} x_{i}^{2} x_{j}^{2} x_{k}^{2}\right) \quad \text { (Cauchy-Schwarz) } \\
& =\left(\sum_{i, j, k} T_{i j k}^{2}\right) \cdot 1=\|T\|_{F}^{2}
\end{aligned}
$$

Taking the supremum over the left-hand side shows that $\|T\|_{\text {inj }}^{2} \leq\|T\|_{F}^{2}$.
Consider a third, computationally tractable norm that interpolates between the Frobenius and injective tensor norms:

- The SoS norm:

$$
\|T\|_{S o S_{t}}=\max _{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}\left[\left\langle T, x^{\otimes 3}\right\rangle\right] \text { for } t \geq 6 \text { even }
$$

where $\widetilde{\mathbb{E}}$ ranges over deg-t pseudo-expectations over the variable x satisfying $\|x\|^{2}=1$. Notice this norm is computationally tractable via a $d^{O(t)}$ algorithm - namely, by setting up a semi-definite program and running the ellipsoid method.

Claim 1. As the degree t approaches infinity along the even numbers, the degree-t SoS norm is monotonically decreasing and approaches the injective tensor norm:

$$
\|T\|_{S o S_{t}} \searrow\|T\|_{i n j} .
$$

Additionally, the Frobenius norm is at least the degree-6 SoS norm:

$$
\|T\|_{F} \geq\|T\|_{S_{o S_{6}}}
$$

2.2 Q: How big does the noise E have to be before Jennrich's breaks?

When the scale of the noise is on the order of $1 / d^{c}$ or smaller for sufficiently large c, Jennrich's algorithm succeeds. If c is too small, however, the scale of the noise dominates that of the signal, and Jennrich's cannot discern between the two.

Indeed, consider the setting in which

$$
E_{i j k} \sim \mathcal{N}\left(0, d^{-2+\epsilon}\right),
$$

for any $\epsilon>0$. Here, $c=1-\epsilon / 2<1$.
Recall that in Jennrich's algorithm, we consider a pair of contractions of the tensor T of the following sort:

- Sample $g \sim \mathcal{N}\left(0, I_{d}\right)$
- Contract to get matrix

$$
M_{g}=T(g,:,:)=\sum_{i}\left\langle g, u_{i}\right\rangle u_{i} u_{i}^{\top}+E(g,:,:)
$$

Every entry of $E(g,:,:)=\sum_{k=1}^{d} g_{k} E_{k:: ~}$ is of the form

$$
E(g,:,:)_{i j}=\sum_{k} g_{k} E_{k i j} .
$$

Conditioning on E, every entry has distribution $\mathcal{N}\left(0, \sum_{k} E_{k i j}^{2}\right)$. The variance term concentrates to $d / d^{2-\epsilon}=d^{-1+\epsilon}$ with sufficiently large dimension d, so we make
the approximation that $E(g,:,:)_{i j} \sim \mathcal{N}\left(0, d^{-1+\epsilon}\right)$. Using the fact that with high probability

$$
\|G\|_{\mathrm{op}} \approx \sqrt{d}
$$

where G is a random matrix with i.i.d. standard normal random variables, we obtain the high-probability lower bound

$$
\|E(g,:,:)\|_{\mathrm{op}} \approx \sqrt{d} \cdot \sqrt{\frac{1}{d^{1-\epsilon}}}=d^{\epsilon / 2} \gg 1
$$

In contrast, the scale of the signal is $O(1)$. Indeed, we have that $\left\langle g, u_{k}\right\rangle \sim \mathcal{N}(0,1)$ has scale 1 for each k. Since the matrices $u_{k} u_{k}^{\top}$ are mutually orthogonal,

$$
\left\|\sum_{k}\left\langle g, u_{k}\right\rangle u_{k} u_{k}^{\top}\right\|_{\mathrm{op}}=\max _{k \in[d]}\left|\left\langle g, u_{k}\right\rangle\right| \approx 2 \sqrt{\log d} .
$$

For sufficiently large d, it follows that the scale of the noise of M_{g} far exceeds the scale of the $O(\sqrt{\log d})$ signal.

Claim 2. With high probability,

$$
\left\|\mathcal{N}\left(0, \sigma^{2}\right)^{d \times d \times d}\right\|_{S o S_{6}} \leq \sigma d^{3 / 4} \cdot \operatorname{polylog}(d)
$$

In the noise setting defined above with $\epsilon=0.1$, we use this claim to obtain $\|E\|_{S o S_{6}} \lesssim d^{-0.2}$ « 1 . We will show that as long as $\|E\|_{S o S_{6}} \ll 1$, there is an algorithm to recover u_{1}, \ldots, u_{d}.

2.3 Problem Setup

Let's make this claim more concrete. Again, we have access to

$$
T=\sum_{i=1}^{d} u_{i}^{\otimes 3}+E
$$

where the u_{i} 's are orthonormal and the size of the norm is at most $\|E\|_{S o S_{6}}=o(1)$ (norm is vanishing).

Consider the polynomial

$$
p_{\ell}(x)=\sum_{i=1}^{d}\left\langle x, u_{i}\right\rangle^{\ell} .
$$

Goal: Our objective will be to maximize p_{3}.

2.4 Algorithm Attempt 1

This algorithm does not work, but introduces helpful ideas.

Define our SoS program to be:

- Variables:

$$
x
$$

- Constraints:

$$
\|x\|^{2}=1
$$

- Objective:

$$
\max _{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}\left\langle T, x^{\otimes 3}\right\rangle
$$

Lemma 3.

$$
\widetilde{\mathbb{E}}\left[p_{3}(x)\right] \geq 1-o(1) .
$$

Proof. Consider the real distribution uniform over $\left\{u_{1}, \ldots, u_{d}\right\}$, and call it $\mathbb{E}[\cdot]$. This is the ideal distribution because if we have acess to $\mathbb{E}[\cdot]$, we can just sample from this distribution to obtain the factors $\left\{u_{1}, \ldots, u_{d}\right\}$.

$$
\begin{aligned}
\mathbb{E}\left[p_{3}(x)\right] & =\mathbb{E}_{j \sim[d]}\left[\sum_{i}\left\langle u_{i}, x\right\rangle^{3}\right] \\
& =\frac{1}{d} \sum_{j=1}^{d}\left(\sum_{i}\left\langle u_{i}, u_{j}\right\rangle^{3}\right) \\
& =\frac{1}{d} \cdot d=1 .
\end{aligned}
$$

This makes sense because the true components should be able to maximize p_{3}.
Now looking at our noisy objective:

$$
\begin{aligned}
\widetilde{\mathbb{E}}\left[\left\langle T, x^{\otimes 3}\right\rangle\right] & \geq \mathbb{E}\left[\left\langle T, x^{\otimes 3}\right\rangle\right] \\
& =\mathbb{E}\left[p_{3}(x)\right]+\mathbb{E}\left[\left\langle E, x^{\otimes 3}\right\rangle\right] \geq 1-o(1),
\end{aligned}
$$

where we have used that

$$
\|E\|=o(1)
$$

Now,

$$
\Longrightarrow \tilde{\mathbb{E}}\left[p_{3}(x)\right]=\tilde{\mathbb{E}}\left[\left\langle T, x^{\otimes 3}\right\rangle\right]-\tilde{\mathbb{E}}\left[\left\langle E, x^{\otimes 3}\right\rangle\right] \leq 1-o(1)
$$

Lemma 4. The optimal choice of $\widetilde{\mathbb{E}}$ also satisfies $\widetilde{\mathbb{E}}\left[p_{4}(x)\right] \geq 1-o(1)$.
Proof.

$$
\begin{aligned}
1-o(1) & \leq \widetilde{\mathbb{E}}\left[p_{3}(x)\right]^{2} \\
& \leq \widetilde{\mathbb{E}}\left[p_{3}(x)^{2}\right] \quad \text { (using "pseudo-expectation Cauchy-Schwarz.") } \\
& =\widetilde{\mathbb{E}}\left[\left(\sum_{i}\left\langle u_{i}, x\right\rangle^{3}\right)^{2}\right]
\end{aligned}
$$

In the second line, "pseudo-expectation Cauchy-Schwarz." is $\tilde{\mathbb{E}}[p \cdot q] \leq \tilde{\mathbb{E}}\left[p^{2}\right]^{1 / 2} \tilde{\mathbb{E}}\left[q^{2}\right]^{1 / 2}$.
Now focusing on $\left(\sum_{i}\left\langle u_{i}, x\right\rangle^{3}\right)^{2}$, in degree- 6 SoS :

$$
\begin{gathered}
\left(\sum_{i}\left\langle u_{i}, x\right\rangle^{3}\right)^{2}=\left(\sum_{i}\left\langle u_{i}, x\right\rangle \cdot\left\langle u_{i}, x\right\rangle^{2}\right)^{2} \\
\leq\left(\sum_{i}\left\langle u_{i}, x\right\rangle^{2}\right) \cdot\left(\sum_{i}\left\langle u_{i}, x\right\rangle^{4}\right) \quad \text { (using Cauchy-Schwarz) } \\
=1 \cdot \sum_{i}\left\langle u_{i}, x\right\rangle^{4}=p_{4}(x)
\end{gathered}
$$

2.5 How do we "round" the pseudo-distribution to a solution?

Idea 1: What if we used Jennrich's on the degree-3 object $\widetilde{\mathbb{E}}\left[x^{\otimes 3}\right]$?
There's an issue here. Suppose $\widetilde{\mathbb{E}}$ is an actual distribution that places $\frac{1}{\sqrt{d}}$ mass on an asbitrary unit vector $w \perp u_{1}, \ldots, u_{d}$ and $\frac{1-1 / \sqrt{d}}{d} \sim 1 / d$ mass on each of u_{1}, \ldots, u_{d}.

$$
\widetilde{T}=\widetilde{\mathbb{E}}\left[x^{\otimes 3}\right]=\frac{1-1 / \sqrt{d}}{d} \sum_{i} u_{i}^{\otimes 3}+\frac{1}{\sqrt{d}} w^{\otimes 3}
$$

has contraction

$$
\widetilde{T}(g,:,:)=\frac{1-1 / \sqrt{d}}{d} \sum_{i}\left\langle g, u_{i}\right\rangle u_{i}^{\otimes 2}+\frac{1}{\sqrt{d}}\langle g, w\rangle w^{\otimes 2}
$$

The second term outweighs the first (important) one by a ratio of \sqrt{d}, which means the eigenvectors of $\widetilde{T}=\widetilde{\mathbb{E}}\left[x^{\otimes 3}\right]$ are useless!

In a deeper sense, this distribution is problematic because it's a very "lowentropy" distribution - lots of weight placed on one vector w. If we had something closer to the uniform distribution, this might work.

2.6 Algorithm Attempt 2

This time, the algorithm will work.
Consider the same SoS program as before in Section 2.4, but

$$
\max _{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}\left\langle T, x^{\otimes 3}\right\rangle
$$

over degree-6 pseudo-expectations $\widetilde{\mathbb{E}}$ which:

1. Satisfy program constraints - that is, $\|x\|^{2}=1$.
2. Have the max-entropy properties

$$
\begin{gathered}
\left\|\widetilde{\mathbb{E}}\left[x x^{\top}\right]\right\|_{\mathrm{op}} \leq \frac{1}{d} \\
\left\|\widetilde{\mathbb{E}}\left[(x \otimes x)(x \otimes x)^{\top}\right]\right\|_{\mathrm{op}} \leq \frac{1}{d}
\end{gathered}
$$

Indeed, note that if $\widetilde{\mathbb{E}}$ is uniform over the directions u_{1}, \ldots, u_{d}, then

$$
\widetilde{\mathbb{E}}\left[x x^{\top}\right]=\frac{1}{d} \sum_{i} u_{i} u_{i}^{\top}=\frac{1}{d} \cdot I_{d} .
$$

Claim: If we run Jennrich's on $\widetilde{\mathbb{E}}\left[x^{\otimes} 3\right]$ for pseudo-distributions optimizing this new program, we will recover almost all the components.
Lemma 5. For this optimal $\widetilde{\mathbb{E}}$, for $1-o(1)$ fraction of $i \in[d]$,

$$
\widetilde{\mathbb{E}}\left[\left\langle u_{i}, x\right\rangle^{4}\right] \geq \frac{1}{d} \cdot(1-o(1)) .
$$

Proof. Suppose for sake of contradiction that for $\delta=\Omega(1)$ fraction of i 's we have

$$
\widetilde{\mathbb{E}}\left\langle u_{i}, x\right\rangle^{4} \leq \frac{1-\delta}{d}
$$

By averaging, for some other i, we have

$$
\widetilde{\mathbb{E}}\left\langle u_{i}, x\right\rangle^{4}>\frac{1}{d}
$$

However, notice that:

$$
\begin{gathered}
\widetilde{\mathbb{E}}\left\langle u_{i}, x\right)^{4}=\left(u_{i} \otimes u_{i}\right)^{\top} \widetilde{\mathbb{E}}\left[(x \otimes x)(x \otimes x)^{\top}\right]\left(u_{i} \otimes u_{i}\right) \\
\Longrightarrow\left\|\left(u_{i} \otimes u_{i}\right)^{\top} \widetilde{\mathbb{E}}\left[(x \otimes x)(x \otimes x)^{\top}\right]\left(u_{i} \otimes u_{i}\right)\right\|_{o p} \\
\leq\left\|\left(u_{i} \otimes u_{i}\right)^{\top}\right\|_{o p}\left\|\widetilde{\mathbb{E}}\left[(x \otimes x)(x \otimes x)^{\top}\right]\right\|_{o p}\left\|\left(u_{i} \otimes u_{i}\right)\right\|_{o p} \\
=\left\|\widetilde{\mathbb{E}}\left[(x \otimes x)(x \otimes x)^{\top}\right]\right\|_{o p} \leq \frac{1}{d} \quad \text { (by the high entropy constraint) }
\end{gathered}
$$

And we have a contradiction on $\widetilde{\mathbb{E}}\left\langle u_{i}, x\right\rangle^{4}$.

References

[HL18] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1021-1034, 2018.
[Hop18] Samuel B Hopkins. Clustering and sum of squares proofs: Six blog posts on unsupervised learning, 2018. https://www.samuelbhopkins.com/clustering.pdf.
[KS17] Pravesh K. Kothari and David Steurer. Outlier-robust moment-estimation via sum-of-squares. CoRR, abs/1711.11581, 2017.

