
CS 224 Fall 2023 Scribes: Daniel Sheremeta, Kenny Gu
September 25, 2023

Lecture 6: Learning Mixtures of Gaussians with SoS

Outline

Last time: SoS basics and application to robust regression. Recall the general design
setup for our SoS algorithm:

1. Set up a system of polynomial inequalities in variable. For robust regression:
{(ai), w}.

2. Optimize an objective over pseudo-distributions Ẽ over solutions.

3. Give “simple proof of identifiability” that global optimizer has small clean
MSE.

4. Rounding step. For robust regression: output Ẽ[w].

Today, we study an application to learning mixtures of Gaussians. Warning: The
system of inequalities and rounding step will be trickier than with robust regression.

1 Mixtures of Gaussians

Definition 1 (Mixtures of Gaussians). Given centers µ1, . . . , µk ∈ Rd and mixing
weights λ1, . . . , λk ∈ [0, 1] such that

∑
i λi = 1, we are given i.i.d. samples from

q =
∑
i

1

k
·N(µi, Idd).

For our purposes today, assume λi = 1/k for all k.
If the µi are robustly linearly independent and k ≤ d, we can use Jennrich’s

algorithm. When k ≫ d (i.e. the overcomplete regime), it is not possible to apply
Jennrich’s algorithm, but (i) if µi are random and k ≪ dℓ/2 then we may apply the
tensor power method on degree-ℓ tensors or (ii) if µi’s are smoothed, then Jennrich’s
on degree-ℓ moment tensor provably works when k ≪ d⌊(ℓ−1)/2⌋.

Today, we try to find an approach that doesn’t require strong conditions on µi.
Instead we only require that µi’s are “well-separated”. Define

∆
def
= max

i ̸=j
|µi − µj|.

1

Intuitively, it is more difficult to distinguish the centers when they are close together.
A natural question to ask is the minimum separation ∆ such that the centers are
efficiently recoverable. One of the first results on this question was:

Theorem 1 ([Das99]). If ∆ ≥ Ω(d1/2), then

Px∼N(µ,Id)[∥x− µ∥ >
√
d+ t] ≤ exp(−Ω(t2)),

so components are nearly disjoint and a clustering algorithm will work.

In some sense, this theorem states that the natural radius of a Gaussian cluster is
O(d1/2). In [AK05], the authors exploit a geometric observation to obtain a stronger
bound for ∆.

Theorem 2 ([AK05]). Suppose ∆ ≥ Ω(d1/4). Even though components now overlap, it
follows from a geometric argument that every pair of vertices from the same component will
be closer than every of vertices from different components, so the centers can be recovered
efficiently.

The geometric argument leverages the fact that, in high dimensions, random
vectors are approximately orthogonal, so we may apply the Pythagorean theorem.

How far can the bound for ∆ be pushed down? In [RV17], the authors proved
an impossibility result.

Theorem 3 ([RV17]). For ∆ = o(
√
log k), it is information-theoretically impossible to

recover the centers µi.

The most natural question to ask if if the gap can be closed. Is the Θ(
√
log k)

threshold tight? This brings us to the main result of this lecture.

Theorem 4 ([HL18], [KSS18], [DKS18]). For any t > 0, if ∆ ≥ Ω(k1/t), there is an
algorithm with time and sample complexity dO(t) · poly(k)-time which recovers µ1, . . . , µk

to error tt/2/poly(k, d).

In other words, if ∆ ≥ k0.001, time and sample complexity are polynomial. By taking
t = log k, we get a quasipolynomial-time algorithm that achieves the threshold ∆ ≍
log k. (The quasipolynomial-time algorithm was improved to a polynomial time
algorithm in [LL22].) This algorithm is based on running degree-t SoS algorithm.

2

1.1 Inefficient algorithm

Idea: brute-force search over subsets of size N = n/k to find a subset that “looks
like it came from a single Gaussian”. What precisely does it mean to look like a
Gaussian? The moment bounds for N (µ, Id) are a distinctive feature of Gaussian
distributions. For any µ ∈ Sd−1,

Ex[⟨µ, x− µ⟩s] = (s− 1)!! ≤ ss/2 for all even s.

Hence for sufficiently many samples q ∼ N (µ, Id),

1

N

∑
i

⟨u, xi − u⟩s ≤ 2ss/2 for all even s. (1)

with high probability.
This leads to the main idea behind our “inefficient algorthim” on which we will

apply SoS. Search over all subsets of size N = n/k and find a subset {xi} of the
samples that satisfies inequality (1) where u is taken as the estimated mean. More
explicitly, here is the SoS Program.
Input: {(xi)}ni=1 sampled i.i.d. from 1

k

∑
j N (µj, Id).

Variables:

• µ (vector): our estimates for a center

• a1, . . . , an (scalar): indicators for points that we think comprise a component.

Constraints:

• a2i − ai = 0 for all 1 ≤ i ≤ n (indicators are in {0, 1})

•
∑

i ai = n/k (components makes up 1/k of data)

• 1
n/k

∑
i aixi = µ (µ is the empirical mean of selected points)

• 1
n/k

∑
i ai⟨xi − µ, u⟩t ≤ 2tt/2∥u∥t (empirical moments approximate Gaussian)

Problem: Unlike in robust regression, there are k “ground truths” instead of just
1. In fact, any distribution over components yields a valid pseudo-distribution, so
we will need to pick a special objective function to force the pseudo-distribution to
look like a uniform distribution over the components.

In particular, these subtleties imply we that need a fancier “rounding algorithm”
than simply outputting Ẽ[µ].

Another problem: Our last constraint is currently quantified over all u ∈ Sd−1,
but we need to write a finite set of constraints for the SoS program.

3

Idea: We can encode everything in a big tensor

T =
1

n/k

∑
i

ai(xi − µ)⊗t =⇒ 1

n/k

∑
i

ai⟨xi − µ, u⟩t = T (u, u, u).

Then we want a constraint that T ≈ Ex∼N (0,Id)[x
⊗t], so we may set

∥T − Ex∼N(0,Id)[x
⊗t]∥2F ≤ 1

as the constraint.

1.2 Proof of identifiability

For notational convenience, let N = n/k. Let Sj = {i ∈ [n] from N (µi, Id)}. For
technical reasons to be seen later, suppose t is a power of 2 and suppose ∆ ≫

√
tk1/t.

Let ai choose a subset S ⊂ [n] of size N , and define cj =
|S∩Sj |

N
. Thus cj is a

normalized measure of the overlap between S and Sj . However, we can’t define cj
in the SoS paradigm, so write

cj =
1

N

∑
i∈Sj

ai

Thus
∑k

j=1 cj = 1.
For convenience and pedagogical purposes, we restrict our attention to the case

d = 1. The higher-dimensional cases are relatively similar. Then the moment bound
in (1) is equivalent to

1

N

∑
i

ai(xi − µ)t ≤ 2tt/2

Lemma 1. For all j,
ctj(µ− µj)

t ≤ O(t)t/2 · ct−1
j

Interpretation. Taking this out of the SoS paradigm, this is equivalent to |µ− µj| ≤
O(

√
t) · c−1/t

j . i.e. if the overlap is large, than the outputted mean will be close to
ground-truth.

Degree-t SoS proof of Lemma 1. The main tool is “SoS Hölder’s.” Recall Hölder’s
inequality, which states that ⟨b, c⟩ ≤∥b∥p ·∥c∥q for all p, q satisfying 1

p
+ 1

q
. It is easier

to deal with integral powers than fractional powers in the SoS paradigm, so rewrite
this inequality by the equivalent∑

i

bici

t

≤

∑
i

b
t

t−1

i

∑
i

cti

 .

4

If b2i = bi, then there is a degree-t SoS proof that the above inequality is true (proof
omitted). Applying this to our situation, we obtain that 1

N

∑
i∈Sj

ai

t

(µ− µj)
t =

 1

N

∑
i∈Sj

ai(µ− µj)

t

≤

 1

N

∑
i∈Sj

ai

t−1 1

N

∑
i∈Sj

ai(µ− µj)
t

= ct−1

j

 1

N

∑
i∈Sj

ai[(µ− xi)− (µj − xi)]
t

Recall from last lecture that (a+ b)t ≤ 2t(at + bt) for all t (also from Hölder’s). Since
t is even, it follows that the last expression is bounded by 1

n

∑
i∈Sj

ai

t

(µ− µj)
t ≤ ct−1

j 2t

 1

N

∑
i∈Sj

ai(µ− xi)
t +

1

N

∑
i∈Sj

ai(µj − xi)
t

≤ ct−1

j 2t
(
2tt/2 + 2tt/2

)
= ct−1

j O(t)t/2

by applying the moment bound to N (µ, Id) and the constraint 1
N

∑
j∈Sj

ai(µj−xi)
t ≤

2tt/2.

Claim 1. The brute-force algorithm returns µ which is very close to µj . Explicitly, for every
center µ∗ = µj , then the component Sj∗ with largest overlap with S satisfies |S ∩ Sj∗| =
(1− δ)N for δ < ktt/2 −O(1/δt) << 1.

Proof of claim. Suppose without loss of generality that c1 ≥ c2 ≥ · · · ≥ ck. Since∑
j cj = 1, we have c1 ≥ 1/k. Let c1 = 1− δ, so c2 ≥ δ/k. Thus there is non-trivial

overlap for at least two components. By Lemma 1,

|µ− µ1| ≤ O(
√
t) · c−1/t

1 = O(
√
t)(1− δ)−1/t ≤ O(

√
t)k1/t ≪ ∆

By the triangle inequality,

|µ− µ2| ≥ |µ1 − µ2| − |µ1 − µ| ≥ ∆/2

Then applying Lemma 1 again,

∆/2 ≤ |µ− µ2| ≤ O(
√
t) · c−1/t

2 ≤ O(
√
t) · (δ/k)−1/t

5

Rearranging, this gives

δ ≲

(
k1/t

√
t

∆

)t

= o(1)

The upshot of this is that c1 is very close to 1, so very little is lost by throwing
away the vector chosen by the SoS algorithm and we may throw away the points
corresponding to this cluster, then repeat on find the centers of the remaining
clusters.

However, there is a problem with our proof which captures a big theme in
the SoS paradigm. The claim above “breaks symmetry” by ordering the ci and
examining the largest. This sort of proof is hard to implement in the SoS paradigm.
Instead we want to prove a version of the claim which doesn’t break symmetry.

Claim 2 (Symmetric version of Claim 1).∑
j

c2j ≥ 1− k2tt/2O(1/∆)t = 1− o(1)

Interpretation. This is a stronger claim because∥c∥∞ ≥ ∥c∥22
∥c∥1

=∥c∥22.

Proof of Claim. Rewrite

1 =

∑
j

cj

2

=
∑
j

c2j +
∑
i ̸=j

cicj

For any i ̸= j, we can bound

cicj ≤ cicj

(
|µi − µj|

∆

)t

≤ cicj

(
|µi − µ|+ |µj − µ|

∆

)t

≤ 2t

∆t
cicj

(
(µi − µ)t + (µj − µ)t

)
In the last line, we use again the inequality (a + b)t ≤ 2t(at + bt) Since |µi − µ| ≤
O(

√
t)c

−1/t
i and similarly for j, so

cicj ≤ O(t)t/2/∆t.

Then
∑

j c
2
j = 1− o(1), completing the proof.

6

1.3 Objective function

If Ẽ was actually a uniform distribution over components (i.e. ai = 1[i ∈ Sj]), then

Ẽ[aaT] = Ej[a
(j)(a(j))⊤]

Thus we want to “maximise entropy” i.e. be agnostic towards which component
is picked out by the SoS program. A good objective that does this is

min
Ẽ

∥∥∥Ẽ[aa⊤]∥∥∥2
F
.

We will explain why this maximises entropy and give the full algorithm next
lecture.

7

References

[AK05] Sanjeev Arora and Ravi Kannan. Learning mixtures of separated non-
spherical Gaussians. Ann. Appl. Probab., 15(1A):69–92, 2005.

[Das99] Sanjoy Dasgupta. Learning mixtures of Gaussians. In 40th Annual Sympo-
sium on Foundations of Computer Science (New York, 1999), pages 634–644.
IEEE Computer Soc., Los Alamitos, CA, 1999.

[DKS18] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. List-decodable
robust mean estimation and learning mixtures of spherical Gaussians.
In STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1047–1060. ACM, New York, 2018.

[HL18] Samuel B. Hopkins and Jerry Li. Mixture models, robustness, and sum of
squares proofs. In STOC’18—Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1021–1034. ACM, New York,
2018.

[KSS18] Pravesh K. Kothari, Jacob Steinhardt, and David Steurer. Robust moment
estimation and improved clustering via sum of squares. In STOC’18—
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 1035–1046. ACM, New York, 2018.

[LL22] Allen Liu and Jerry Li. Clustering mixtures with almost optimal separation
in polynomial time. In STOC ’22—Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1248–1261. ACM, New
York, [2022] ©2022.

[RV17] Oded Regev and Aravindan Vijayaraghavan. On learning mixtures of
well-separated Gaussians. In 58th Annual IEEE Symposium on Foundations
of Computer Science—FOCS 2017, pages 85–96. IEEE Computer Soc., Los
Alamitos, CA, 2017.

8

	Mixtures of Gaussians
	Inefficient algorithm
	Proof of identifiability
	Objective function

