
CS 224 Fall 2023 Scribes: Kevin Du
September 20, 2023

Lecture 5: Sum-of-squares I: pseudo-distributions,
application to robust regression

1 Sum-Of-Squares Introduction

The Sum-Of-Squares algorithm (SoS) is a generic framework that can be applied to
a wide variety of nonconvex optimization problems, similar to linear programming
for linear applications. This SoS framework can convert an inefficient algorithm
with a “simple” proof of correctness, i.e. a proof involving a restricted set of convex
axioms, into an efficient algorithm with the same guarantees.

SoS is used in a wide variety of statistical algorithms and gives an elegant
framework for robust estimation in the presence of corrupted data.

2 Robust Regression Introduction

As an example use case of the SoS algorithm, consider a robust regression setting in
which we aim to perform linear regression on arbitrarily corrupted data. Intuitively,
we think of an adversary who has access to our dataset and alters a fraction η of the
data to make our regression algorithm fail.

Specifically, we are given a corrupted dataset (xi, yi)
N
i=1 with corruption fraction

η. The structure of this data is given as follows. The explanatory data is given by

(x∗i , y
∗
i , a
∗
i)

N
i=1

with y∗i = 〈w, x∗i 〉+ ζi

||xi|| ≤ 1

||w|| ≤ R

ζi ∼ N (0, σ2)

a∗i ∈ {0, 1}∑
a∗i ≥ N(1− η)

a∗i = 1 =⇒ (xi, yi) = (x∗i , y
∗
i).

1

We only observe the dataset (xi, yi)
N
i=1 We aim to find

arg min
w

1

N

∑
a∗i (yi − 〈w, xi〉)2.

Here ai is an indicator variable with a∗i = 1 if the data point is clean and a∗i = 0

if it is corrupted. The expression we want to minimize then is the clean MSE, i.e.
the MSE over the uncorrupted data.

2.1 Initial Approaches

When analyzing different robust regression approaches, we will compare their
performance against the optimal baseline

OPT =
1

N

∑
a∗i (yi − 〈w∗, xi〉)2

which is the clean MSE obtained if we know which points are corrupted, i.e. if
the ai variables were all given to us. The aim is to find an algorithm which has a
clean MSE that is close to “OPT” for small values of η.

If we simply run oridinary least squares regression on the given dataset, the
clean MSE we achieve is “OPT” + O(ηR2). This gives a naive upper bound on the
achievable clean MSE. A lower bound on the clean MSE is given by the information-
theoretic bound “OPT” + O(η2σ2).

One may think to use regularization or choose a less sensitive loss function in
order to minimize the effect of outliers caused by corrupted data. For instance,
statistician Peter J. Huber proposed using the Huber loss function, which grows
linearly with respect to the magnitude of the error, instead of quadratically as seen
in Figure 1. [?]

huber.png

Figure 1: The Huber Loss Function

2

However, Chen, Koehler, Moitra, and Yau recently showed that

Theorem 1. Any algorithm based on minimizing a convex loss gets clean MSE η3R [?].

Thus, these approaches can not be made to achieve the information-theoretic
lower bound.

Note that any algorithm can be made to perform poorly when η ≥ 1/2. This is
because if there are more corrupted data points than clean data points, an adversary
could change many of the data points to match some other parameter w′. Then, no
algorithm could tell the clean dataset apart from the fictitious ones generated by w′.
However, the focus moving forward will be on cases with small values of η.

3 SoS for Robust Regression

The SoS framework gives an algorithm for robust regression which achieves a
clean MSE of (1 +O(Cη1/2))(OPT +O(Cη1/2σ2) and performs well in practice for
distributions with low hypercontractivity constant. To achieve this performance,
we first give an inefficient algorithm that finds a low-MSE solution.

We model the problem as an optimization problem with a system of polynomial
constraints.

Solving the regression problem then reduces to solving the polynomial opti-
mization problem above. Unfortunately, polynomial optimization problems are
nonconvex and in general NP-hard. However, we can define a convex relaxation of
the problem which becomes tractable through the SoS framework.

3.1 Pseudodistributions

Instead of optimizing over ai and w we optimize over distributions of this quantities.
More specifically, we optimize over pseudo-distributions, objects which behave like
distributions in that we can take pseudo-expectations of these quantities.

Definition 1. A degree-t pseudo-distribution is given by the pseudo-expectation operator
Ẽ which takes as input a polynomial in the variables a1, . . . , aN , w1, . . . , wd with degree
≤ d and outputs a number. This operator must satisfy:

Prop. 1. Ẽ[1] = 1

Prop. 2. Ẽ[αp+ βq] = α Ẽ[p] + β Ẽ[q]

Prop. 3. Ẽ[p2] ≥ 0 for all polynomials p with degree ≤ t/2

3

Variables

1. w - estimate of w∗

2. a1, . . . , aN

Constraints

1. a2i = ai for all i

2. 1
N

∑
ai ≥ 1− η

Objective

min
w

1

N
ai(yi − 〈w, xi〉)2

Table 1: A polynomial optimization problem which models robust linear regression

Note that the space of pseudo-distributions is a finite-dimensional object spanned
by pseudo-expectations of monomials such as Ẽ[a53a

6
2w5]. Furthermore, the set of

pseudo-expectations is convex due to property 3 in Definition 3.1. This concept of
the pseudo-distribution will allow us to convert the robust regression problem into
a convex optimization problem.

3.2 Including Program Constraints

In order to include the constraints of our polynomial optimization problem, we add
another property that Ẽ must satisfy:

Prop. 4. If there is a “simple”, i.e. degree-t, proof that p ≥ 0 using the problem
constraints, then Ẽ[p] ≥ 0.

Here, a degree-t proof of a statement is one which uses only polynomials of
degree ≤ t and the fact that sums of squares are nonnegative, i.e.

∑
x2i ≥ 0. More

precisely, a proof is a chain of inequalities with each one derived from the preceding
ones by the following derivation:

p(x) ≥ 0, q(x) = 0 =⇒ SOS1(x) + p(x) · SOS2(x) + q(x) · r(x) ≥ 0

4

for any SOS1, SOS2 which are sums of squares of polynomials. Note that this
property stipulates a convex constraint on Ẽ. Thus, we aim to find an instance of
E that satisfies these convex constraints. Note that a solution always exist as the
true objective is feasible under the SoS program. Thus, we can use various convex
optimization algorithms such as the ellipsoid method to find a solution instance.

3.3 Examples

We examine a couple examples of conditions we can derive under the SoS frame-
work.

Example 1. From the constraint a2i = ai, there is a simple proof that 0 ≤ ai ≤ 1.

Proof. Note that ai = a2i ≥ 0. Also, we have (1− ai)2 = 1− ai − (a2i − ai) ≥ 0 =⇒
1− ai ≥ 0 =⇒ ai ≤ 1.

Note that we can not prove that ai ∈ {0, 1} in the SoS system. However, since
we’ve shown that 0 ≤ ai ≤ 1, we know that the SoS program must have 0 ≤ Ẽ[ai] ≤ 1

for any degree-2 pseudo-expectation.

Example 2 (Cauchy-Schwartz). If ui and vi are variables, then there is a simple proof that

(
∑
i

uivi)
2 ≤ (

∑
i

u2i)(
∑
i

v2i).

Proof. We have

(
∑
i

u2i)(
∑
i

v2i)− (
∑
i

uivi)
2 =

∑
i,j

(uivj − ujvi)2 ≥ 0

3.4 Reading Off the Objective

Note that the objective is to find parameters w which minimize the clean MSE. Note
that by the convexity of Ẽ, we have

Lemma 1.
∑

i a
∗
i (yi − 〈Ẽ[w], xi〉)2 ≤

∑
i a
∗
i Ẽ[(yi − 〈w, xi〉)2]

If we can bound the right hand side of the above equation, we know that Ẽ[w]

achieves a low clean MSE.

5

3.5 Bounding Clean MSE of the SoS Output

Suppose Ẽ is a solution to the convex constraints described above. Then, we aim to
bound the clean MSE of the solution vector Ẽ[w]. As seen above, we have

1

N

∑
i

a∗i (yi−〈Ẽ[w], xi〉)2 ≤
1

N

∑
i

a∗i Ẽ[(yi−〈w, xi〉)2] ≤
1

N

∑
i

Ẽ[(yi−〈w, xi〉)2] (*)

To bound this quantity, we decompose the cases under the following substitution

1 = aia
∗
i + ai(1− a∗i) + (1− ai).

Here, aia∗i represents cases where we correctly identified the clean data as clean.
ai(1− a∗i) are cases where we incorrectly identified corrupted data as clean. 1− ai
are cases where we identified data as corrupted. Then, we can write (*) as

(∗) =
1

N

∑
i

aia
∗
i (y
∗
i − 〈w, x∗i 〉)2 (1)

+
1

N

∑
i

ai(1− a∗i)(y∗i − 〈w, x∗i 〉)2 (2)

+
1

N

∑
i

(1− ai)(y∗i − 〈w, x∗i 〉)2 (3)

We can bound each of these terms as follows. First,

(1) =
1

N

∑
i

aia
∗
i (yi − 〈w, xi〉)2

≤ 1

N

∑
i

ai(yi − 〈w, xi〉)2

≤ 1

N

∑
i

a∗i (y
∗
i − 〈w∗, x∗i 〉)2 ≤ OPT

To bound the second term, we use the Cauchy Schwarz bound to get

6

(2) =
1

N

∑
i

ai(1− a∗i)(y∗i − 〈w, x∗i 〉)2

≤

 1

N

∑
i

(1− a∗i)2
1/2

·

 1

N

∑
i

a2i (y
∗
i − 〈w, x∗i 〉)4

1/2

≤ η1/2

 1

N

∑
i

(y∗i − 〈w, x∗i 〉)4
1/2

Similarly, we get

(3) =
1

N

∑
i

(1− ai)(y∗i − 〈w, x∗i 〉)2

≤

 1

N

∑
i

(1− ai)2
1/2

·

 1

N

∑
i

(y∗i − 〈w, x∗i 〉)4
1/2

≤ η1/2

 1

N

∑
i

(y∗i − 〈w, x∗i 〉)4
1/2

To bound the quantity 1
N

∑
i(y
∗
i − 〈w, x∗i 〉)4, recall that y∗i = 〈w∗, x∗i 〉 + ζi where

ζi ∼ N (0, σ2). Then, we have

1

N

∑
i

(y∗i − 〈w, x∗i 〉)4 =
1

N

∑
i

(〈w∗ − w, x∗i 〉+ ζi)
4.

By the elementary inequality (a + b)4 ≤ 8(a4 + b4), we can bound the above
expression by

8

N

∑
i

〈w∗ − w, x∗i 〉4 +
8

N

∑
i

ζ4i .

Note that in expectation 8E[ζ4i] = 24σ4. To summarize, we have shown that

7

(∗) = (1) + (2) + (3)

≤ OPT + 2η1/2

 1

N

∑
i

(y∗i − 〈w, x∗i 〉)4
1/2

≤ OPT + 2η1/2

 8

N

∑
i

〈w∗ − w, x∗i 〉4 +O(σ4)

1/2

≤ OPT +O(η1/2)

 1

N

∑
i

〈w∗ − w, x∗i 〉4
1/2

+ σ2

Note that that last inequality is true when σ4 and

∑
i〈w∗ − w, x∗i 〉4 are roughly

proportional. This is usually the case practically so we will assume this is true going
forward. However, we note that the rigorous inequality is in fact

((∗)−OPT)2 ≤ O(η)

 1

N

∑
i

〈w∗ − w, x∗i 〉4 + σ4

Finally, to bound the value 1

N

∑
i〈w∗ − w, x∗i 〉4, we will need an assumption on

the distribution.

Definition 2. A distribution q is 4-hypercontractive if

Ex∼q[〈v, x〉4] ≤ (C · Ex∼q[〈v, x〉2])2 (**)

for all v ∈ Rd for some C = O(1). q is certifiably 4-hypercontractive if (**) has an SoS
proof.

For instance, any rotation of a product distribution (e.g. N (µ,Σ)) is certifiably
4-hypercontractive.

In our case, we can assume that the distribution of x is 4-hypercontractive
meaning

8

 1

N

∑
i

〈w∗ − w, xi〉4
1/2

≤ C

N

∑
i

〈w∗ − w, xi〉2

=
C

N

∑
i

(y∗i − 〈w, xi〉 − ζi)2

≤ 2C

N

∑
i

(y∗i − 〈w, x∗i 〉)2 +
2C

N

∑
i

ζ2i

≤ 2C

N

∑
i

(y∗i − 〈w, x∗i 〉)2 +O(Cσ2)

Thus, we have shown that

1

N

∑
i

(y∗i − 〈w, x∗i 〉)2 = (∗) ≤ OPT +O(η1/2)

2C

N

∑
i

(y∗i − 〈w, x∗i 〉)2 +O(Cσ2)

Note that the term on the left hand side appears on the right hand side as well.

Thus, rearranging, we get

(1−O(Cη1/2)
1

N

∑
i

(y∗i − 〈w, x∗i 〉)2 ≤ OPT +O(Cη1/2σ2)

Putting this all together, if Cη1/2 is sufficiently small, we have

Clean MSE ≤ (∗) ≤ (1 +O(Cη1/2))(OPT +O(Cη1/2σ2))

We have thus shown that under some mild assumptions about the problem
distribution such as the certifiable 4-hypercontractivity of x, the clean MSE obtained
from a solution found using the SoS program achieves an MSE bounded by the
expression above.

9

	Sum-Of-Squares Introduction
	Robust Regression Introduction
	Initial Approaches

	SoS for Robust Regression
	Pseudodistributions
	Including Program Constraints
	Examples
	Reading Off the Objective
	Bounding Clean MSE of the SoS Output

