
CS 224 Fall 2023 Scribes: Sara Kangaslahti
9/13

Lecture 3: Iterative Methods for Tensor
Decomposition

1 Jennrich’s Algorithm

In the previous lecture, we discussed Jennrich’s algorithm, which can be used to
decompose tensors

T =
k∑
i=1

λiu
⊗3
i

Where u1, ..., uk are linearly independent unit vectors and we assume without loss
of generality that λ1 ≥ ... ≥ λk ≥ 0. However, in practice, Jennrich’s algorithm has
two central issues:

1. It is not very noise robust compared to other algorithms [Jen, SV17]

2. Its runtime is dominated by dense matrix operations. Although the tensor is
of dimension d3, in applications, we often don’t need to write down the full
tensor, just need to know how it acts on individual vectors. As a result, dense
matrix operations significantly constrain the runtime of the algorithm.

As an example, if T = E[x⊗3], we just need to compute

Mz = T (:, :, z) = E[〈x, z〉xxT]

This can be done in O(d2) operations, so the runtime is bottlenecked by dense
matrix operations.

Therefore, in practice, people use heuristics based on the iterative algorithms
defined in Section 2

2 Iterative Algorithms

In this section, we assume that T =
∑k

i=1 λiu
⊗3
i for orthonormal vectors u1, ..., uk.

We will justify and remove this orthogonality assumption in Section 2.4

1

We note from the previous lecture that for any tensor, we can associate the
polynomial

p(x) =
∑
a,b,c

Tabcxaxbxc = T (x, x, x) =
∑
i

λi〈ui, x〉3

We note that in the matrix case, we could just compute the eigenvectors of T , but
for worst-case tensors, this is NP-hard.

However, since our optimization problem is p(x) =
∑

i λi〈ui, x〉3,

• If x = u′ s.t. 〈ui, u′〉 ≈ 0, then p(u′) =
∑

i λi〈ui, u′〉 ≈ 0

• If x = ui, then p(ui) =
∑

j λj〈uj, ui〉 =
∑

j λj1(i = j) = λi >> 0

This intuition indicates that for vectors x = ui, the value p(x) is large, so the eigen-
values are likely optimizers for p(x).

We can in fact show that the local maximizers of p are precisely u1, ..., uk. As a
result, the tensor decomposition problem is equivalent to optimizing the associated
polynomial.

2.1 Gradient descent

2.1.1 Optimization Problem

We consider the optimization problem for the polynomial associated with T :

max
‖x‖=1

p(x) = max
‖x‖=1

∑
a,b,c

Tabcxaxbxc

Thus, by computing the gradient, we can derive the gradent ascent as follows:

xt+1 = xt + η · ∇p(x)

= xt + 3η · T (:, x, x)

However, we note that this gradient descent does not follow the constraint‖x‖ = 1.
Therefore, we need to ensure that x remains on the unit sphere after each gradient
ascent step.

2.1.2 Riemannian Gradient Descent

We could solve this problem by directly projecting x onto the unit sphere as follows:

xt+1 = proj(xt + 3η · T (:, x, x))

2

However, doing a simple projection onto the unit sphere causes all of the movement
of the gradient from xt in the direction directly away from the center of the circle to
be “wasted”. Therefore, we instead first project to the tangent space (the tangent
line to xt on the unit circle) and then project to the unit circle. To compute this
projection, if we let Π = Id− xt(xt)T denote the projection to the tangent space, we
compute:

xt+1 = proj(xt + 3η · Π · T (:, x, x))

We can simplify xt+1 by substituting in for Π:

xt+1 = proj(xt + 3η · Π · T (:, x, x))

= proj(xt + 3η · (Id− xt(xt)T) · T (:, x, x))

= proj(xt + 3η · [T (:, xt, xt)− xt · T (xt, xt, xt)])

= proj(xt + 3η · [T (:, xt, xt)− xt · p(xt)])

We note that a good choice of step size is η = 1
3p(xt)

. This is because this step size
results in step size increasing if the objective decreases and vice versa, and because
it leads to a nice cancellation:

xt+1 = proj
(
T (:, xt, xt)

p(xt)

)
= proj(T (:, xt, xt))

2.2 Tensor Power Method

We know that:
xt+1 = proj(T (:, xt, xt))

We can use this result and generalize the classic matrix power method to tensors.

2.2.1 Matrix Power Method

If T were the matrix T =
∑k

i=1 λiuiu
T
i , then given x =

∑
i ci · ui, we have

T (:, x) = Tx =
∑
i

λici · ui

so

proj(T (:, x)) = proj

∑
i

λici · ui

 =
∑
i

λici
(Σjλ2jc

2
j)

1/2
· ui

Thus, we went from the coefficients (c1, ..., ck) to

proj(λ1c1, ..., λkck)

3

We suppose WLOG λ1 ≥ ... ≥ λk. Then, at each step, the first coordinate gets
weighted more than all other coordinates, so the coordinates will converge to
(1, 0, ..., 0), yielding the top eigenvector. Formally, this is because the ratio between
the ith and 1st coordinate starts at ci

c1
and is multiplied by λi/λ1 at each round,

resulting in exponential “linear” scale.

2.2.2 Generalizing the Power Method to Tensors

For tensors, the analysis is anologous, but we get even faster convergence than in
the matrix case. This is because if x =

∑
i ci · ui, then we have

T (:, x, x) =
∑
i

λi〈x, ui〉2ui =
∑
i

λic
2
i · ui

Thus,

proj(T (:, x, x)) = proj
(
λic

2
i · ui

)
=
∑
i

λic
2
i

(Σjλ2jc
4
j)

1/2
· ui

Thus, we went from the coefficients (c1, ..., ck) to

proj(λ1c21, ..., λkc
2
k)

We suppose WLOG λ1 ≥ ... ≥ λk. Then, the ratio between the ith and 1st coordinate
starts at ci

c1
and is multiplied by λici/λ1c1 at each round. We note that this need not

decay if λici > λ1c1. However, if our initial (c1, ..., ck) are such that

ρ = max
i

λici
λ1c1

< 1

Then in the next step ρ becomes

max
i

λi(λic
2
i)

λ1(λ1c21)
= max

i

(
λici
λ1c1

)2

= ρ2 < 1

Thus, the convergence depends on the initialization, but if the cis are initialized
such that ρ < 1, then the ratios decay at a doubly exponential rate since ρ is squared
at each iteration. Naively, this initialization happens with probability at least 1/k,
but we could also use our derivation to argue that we converge to whichever ui
maximizes λici.

2.2.3 Finding all of the components

We have shown how to converge to the top component, but the remaining compo-
nents may be computed by one of two strategies:

4

1. “Deflation”, ie take the vector û ≈ ui that we converged to, note that λi = p(ui),
and recurse by finding

T − p(û)û⊗3 ≈
∑
j 6=i

λiu
⊗3
i

However, it is difficult to handle the compounding errors caused by successive
deflations in this method.

2. Run tensor power method on many random initializations to get many û

vectors, cluster them, and get a set of estimates.

2.3 Alternating Least Squares (ALS)

ALS is a popular algorithm that can learn all of the components at once. In ALS,
given the current iterates {uti}, we consider the optimization problem

ut+1 = min
ûi

∥∥∥∥∥∥T −
k∑
i=1

ûi ⊗ uti ⊗ uti

∥∥∥∥∥∥
2

F

We note that ALS is just a least-squares regression problem. It is quite hard to
analyze rigorously, but very powerful in practice. Furthermore, the tensor power
method can be interpreted as a “rank-1” version of ALS.

2.4 Analysis of the Orthogonality Assumption

In this section, we show why the initial orthogonality assumption that we made is
reasonable.

2.4.1 Whitening

We can show that the orthogonality assumption is reasonable using whitening. We
can do this in many applications of tensor decomposition in which we get access to
not only T =

∑
i λiu

⊗3
i , but also to

M =
∑
i

λiuiu
T
i

We assume that the uis are linearly independent, but not necessarily orthogonal.
Then, we can use M to whiten the data so that u1, ..., uk become orthogonal.

5

We note that we can write M as M = V DV T , where V ∈ Rd×k and D ∈ Rk×k is a
diagonal matrix with the eigenvalues on the diagonal. Then, we let W = V D−1/2 ∈
Rd×k and ũi = λiW

Tui. Then, we show that W standardizes the data as follows:

W TMW = D−1/2V TV DV TV D−1/2

= D−1/2DD−1/2

= Idk

=
∑
i

λi(W
Tui)(W

Tui)
T

=
∑
i

ũiũ
T
i

Thus, the ũi values are orthogonal because
∑

i ũiũ
T
i = Idk. Then, if we let

T ′ = T (W,W,W) ∈ Rk×k×k,

T ′(x, y, z) = T (Wx,Wy,Wz)

=
∑
i

λi〈Wx, ui〉〈Wy, ui〉〈Wz, ui〉

=
∑
i

λ
−1/2
i 〈ũi, x〉〈ũi, y〉〈ũi, z〉

Thus, T ′ =
∑

i λ
−1/2
i ũ⊗3i . As a result, we have reduced linearly independent uis

to the orthogonal case, and so we can assume that the uis are orthogonal in the
iterative methods above.

2.4.2 Case with no Whitening

If we cannot whiten the uis, then they are only linearly independent and analyzing
the iterative tensor methods becomes significantly more challenging:

Theorem 1. [SV17] Given T =
∑k

i=1 u
⊗3
i for “incoherent” unit vectors u1, ..., uk, ie

satisfying

|〈ui, uj〉| ≤ cmax ≤
1

k1+ε

O(log k + log log d) iterations of tensor power method starting from random initialization
yields a vector û that is O(k1/2 max(cmax, 1/d))-close to some ui, with high probability.

Some additional results are the following:

• Conjecture [SV17]: If u1, ..., uk are random unit vectors and k ≤ O(d3/2), then
tensor power method/gradient descent/ALS converges from random initial-
ization to one of the components with high probability.

6

• In the overcomplete tensor decomposition case (when k >> d), if you initialize
at a point slightly better than random initialization, then the optimization
landscape is benign [GM17].

There have been numerous works that show that the theory is still very far from
explaining the empirical behavior of the tensor power method [SV17, WZ22].

References

[GM17] Rong Ge and Tengyu Ma. On the optimization landscape of tensor decom-
positions, 2017.

[Jen] Will the real jennrich’s algorithm please stand up? Accessed: 2023-09-18.

[SV17] Vatsal Sharan and Gregory Valiant. Orthogonalized als: A theoretically
principled tensor decomposition algorithm for practical use, 2017.

[WZ22] Yuchen Wu and Kangjie Zhou. Lower bounds for the convergence of tensor
power iteration on random overcomplete models, 2022.

7

	Jennrich's Algorithm
	Iterative Algorithms
	Gradient descent
	Optimization Problem
	Riemannian Gradient Descent

	Tensor Power Method
	Matrix Power Method
	Generalizing the Power Method to Tensors
	Finding all of the components

	Alternating Least Squares (ALS)
	Analysis of the Orthogonality Assumption
	Whitening
	Case with no Whitening

