Lecture 3: Iterative Methods for Tensor Decomposition

1 Jennrich's Algorithm

In the previous lecture, we discussed Jennrich's algorithm, which can be used to decompose tensors

$$
T=\sum_{i=1}^{k} \lambda_{i} u_{i}^{\otimes 3}
$$

Where u_{1}, \ldots, u_{k} are linearly independent unit vectors and we assume without loss of generality that $\lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0$. However, in practice, Jennrich's algorithm has two central issues:

1. It is not very noise robust compared to other algorithms [Jen, SV17]
2. Its runtime is dominated by dense matrix operations. Although the tensor is of dimension d^{3}, in applications, we often don't need to write down the full tensor, just need to know how it acts on individual vectors. As a result, dense matrix operations significantly constrain the runtime of the algorithm.
As an example, if $T=\mathbb{E}\left[x^{\otimes 3}\right]$, we just need to compute

$$
M_{z}=T(:,:, z)=\mathbb{E}\left[\langle x, z\rangle x x^{T}\right]
$$

This can be done in $O\left(d^{2}\right)$ operations, so the runtime is bottlenecked by dense matrix operations.

Therefore, in practice, people use heuristics based on the iterative algorithms defined in Section 2

2 Iterative Algorithms

In this section, we assume that $T=\sum_{i=1}^{k} \lambda_{i} u_{i}^{\otimes 3}$ for orthonormal vectors u_{1}, \ldots, u_{k}. We will justify and remove this orthogonality assumption in Section 2.4

We note from the previous lecture that for any tensor, we can associate the polynomial

$$
p(x)=\sum_{a, b, c} T_{a b c} x_{a} x_{b} x_{c}=T(x, x, x)=\sum_{i} \lambda_{i}\left\langle u_{i}, x\right\rangle^{3}
$$

We note that in the matrix case, we could just compute the eigenvectors of T, but for worst-case tensors, this is NP-hard.

However, since our optimization problem is $p(x)=\sum_{i} \lambda_{i}\left\langle u_{i}, x\right\rangle^{3}$,

- If $x=u^{\prime}$ s.t. $\left\langle u_{i}, u^{\prime}\right\rangle \approx 0$, then $p\left(u^{\prime}\right)=\sum_{i} \lambda_{i}\left\langle u_{i}, u^{\prime}\right\rangle \approx 0$
- If $x=u_{i}$, then $p\left(u_{i}\right)=\sum_{j} \lambda_{j}\left\langle u_{j}, u_{i}\right\rangle=\sum_{j} \lambda_{j} \mathbb{1}(i=j)=\lambda_{i} \gg 0$

This intuition indicates that for vectors $x=u_{i}$, the value $p(x)$ is large, so the eigenvalues are likely optimizers for $p(x)$.

We can in fact show that the local maximizers of p are precisely u_{1}, \ldots, u_{k}. As a result, the tensor decomposition problem is equivalent to optimizing the associated polynomial.

2.1 Gradient descent

2.1.1 Optimization Problem

We consider the optimization problem for the polynomial associated with T :

$$
\max _{\|x\|=1} p(x)=\max _{\|x\|=1} \sum_{a, b, c} T_{a b c} x_{a} x_{b} x_{c}
$$

Thus, by computing the gradient, we can derive the gradent ascent as follows:

$$
\begin{aligned}
x^{t+1} & =x^{t}+\eta \cdot \nabla p(x) \\
& =x^{t}+3 \eta \cdot T(:, x, x)
\end{aligned}
$$

However, we note that this gradient descent does not follow the constraint $\|x\|=1$. Therefore, we need to ensure that x remains on the unit sphere after each gradient ascent step.

2.1.2 Riemannian Gradient Descent

We could solve this problem by directly projecting x onto the unit sphere as follows:

$$
x^{t+1}=\operatorname{proj}\left(x^{t}+3 \eta \cdot T(:, x, x)\right)
$$

However, doing a simple projection onto the unit sphere causes all of the movement of the gradient from x^{t} in the direction directly away from the center of the circle to be "wasted". Therefore, we instead first project to the tangent space (the tangent line to x^{t} on the unit circle) and then project to the unit circle. To compute this projection, if we let $\Pi=\mathrm{Id}-x^{t}\left(x^{t}\right)^{T}$ denote the projection to the tangent space, we compute:

$$
x^{t+1}=\operatorname{proj}\left(x^{t}+3 \eta \cdot \Pi \cdot T(:, x, x)\right)
$$

We can simplify x^{t+1} by substituting in for Π :

$$
\begin{aligned}
x^{t+1} & =\operatorname{proj}\left(x^{t}+3 \eta \cdot \Pi \cdot T(:, x, x)\right) \\
& =\operatorname{proj}\left(x^{t}+3 \eta \cdot\left(\operatorname{Id}-x^{t}\left(x^{t}\right)^{T}\right) \cdot T(:, x, x)\right) \\
& =\operatorname{proj}\left(x^{t}+3 \eta \cdot\left[T\left(:, x^{t}, x^{t}\right)-x^{t} \cdot T\left(x^{t}, x^{t}, x^{t}\right)\right]\right) \\
& =\operatorname{proj}\left(x^{t}+3 \eta \cdot\left[T\left(:, x^{t}, x^{t}\right)-x^{t} \cdot p\left(x^{t}\right)\right]\right)
\end{aligned}
$$

We note that a good choice of step size is $\eta=\frac{1}{3 p\left(x^{t}\right)}$. This is because this step size results in step size increasing if the objective decreases and vice versa, and because it leads to a nice cancellation:

$$
x^{t+1}=\operatorname{proj}\left(\frac{T\left(:, x^{t}, x^{t}\right)}{p\left(x^{t}\right)}\right)=\operatorname{proj}\left(T\left(:, x^{t}, x^{t}\right)\right)
$$

2.2 Tensor Power Method

We know that:

$$
x^{t+1}=\operatorname{proj}\left(T\left(:, x^{t}, x^{t}\right)\right)
$$

We can use this result and generalize the classic matrix power method to tensors.

2.2.1 Matrix Power Method

If T were the matrix $T=\sum_{i=1}^{k} \lambda_{i} u_{i} u_{i}^{T}$, then given $x=\sum_{i} c_{i} \cdot u_{i}$, we have

$$
T(:, x)=T x=\sum_{i} \lambda_{i} c_{i} \cdot u_{i}
$$

so

$$
\operatorname{proj}(T(:, x))=\operatorname{proj}\left(\sum_{i} \lambda_{i} c_{i} \cdot u_{i}\right)=\sum_{i} \frac{\lambda_{i} c_{i}}{\left(\Sigma_{j} \lambda_{j}^{2} c_{j}^{2}\right)^{1 / 2}} \cdot u_{i}
$$

Thus, we went from the coefficients $\left(c_{1}, \ldots, c_{k}\right)$ to

$$
\operatorname{proj}\left(\lambda_{1} c_{1}, \ldots, \lambda_{k} c_{k}\right)
$$

We suppose WLOG $\lambda_{1} \geq \ldots \geq \lambda_{k}$. Then, at each step, the first coordinate gets weighted more than all other coordinates, so the coordinates will converge to $(1,0, \ldots, 0)$, yielding the top eigenvector. Formally, this is because the ratio between the i th and 1 st coordinate starts at $\frac{c_{i}}{c_{1}}$ and is multiplied by $\lambda_{i} / \lambda_{1}$ at each round, resulting in exponential "linear" scale.

2.2.2 Generalizing the Power Method to Tensors

For tensors, the analysis is anologous, but we get even faster convergence than in the matrix case. This is because if $x=\sum_{i} c_{i} \cdot u_{i}$, then we have

$$
T(:, x, x)=\sum_{i} \lambda_{i}\left\langle x, u_{i}\right\rangle^{2} u_{i}=\sum_{i} \lambda_{i} c_{i}^{2} \cdot u_{i}
$$

Thus,

$$
\operatorname{proj}(T(:, x, x))=\operatorname{proj}\left(\lambda_{i} c_{i}^{2} \cdot u_{i}\right)=\sum_{i} \frac{\lambda_{i} c_{i}^{2}}{\left(\Sigma_{j} \lambda_{j}^{2} c_{j}^{4}\right)^{1 / 2}} \cdot u_{i}
$$

Thus, we went from the coefficients $\left(c_{1}, \ldots, c_{k}\right)$ to

$$
\operatorname{proj}\left(\lambda_{1} c_{1}^{2}, \ldots, \lambda_{k} c_{k}^{2}\right)
$$

We suppose WLOG $\lambda_{1} \geq \ldots \geq \lambda_{k}$. Then, the ratio between the i th and 1 st coordinate starts at $\frac{c_{i}}{c_{1}}$ and is multiplied by $\lambda_{i} c_{i} / \lambda_{1} c_{1}$ at each round. We note that this need not decay if $\lambda_{i} c_{i}>\lambda_{1} c_{1}$. However, if our initial $\left(c_{1}, \ldots, c_{k}\right)$ are such that

$$
\rho=\max _{i} \frac{\lambda_{i} c_{i}}{\lambda_{1} c_{1}}<1
$$

Then in the next step ρ becomes

$$
\max _{i} \frac{\lambda_{i}\left(\lambda_{i} c_{i}^{2}\right)}{\lambda_{1}\left(\lambda_{1} c_{1}^{2}\right)}=\max _{i}\left(\frac{\lambda_{i} c_{i}}{\lambda_{1} c_{1}}\right)^{2}=\rho^{2}<1
$$

Thus, the convergence depends on the initialization, but if the $c_{i} \mathbf{s}$ are initialized such that $\rho<1$, then the ratios decay at a doubly exponential rate since ρ is squared at each iteration. Naively, this initialization happens with probability at least $1 / k$, but we could also use our derivation to argue that we converge to whichever u_{i} maximizes $\lambda_{i} c_{i}$.

2.2.3 Finding all of the components

We have shown how to converge to the top component, but the remaining components may be computed by one of two strategies:

1. "Deflation", ie take the vector $\hat{u} \approx u_{i}$ that we converged to, note that $\lambda_{i}=p\left(u_{i}\right)$, and recurse by finding

$$
T-p(\hat{u}) \hat{u}^{\otimes 3} \approx \sum_{j \neq i} \lambda_{i} u_{i}^{\otimes 3}
$$

However, it is difficult to handle the compounding errors caused by successive deflations in this method.
2. Run tensor power method on many random initializations to get many \hat{u} vectors, cluster them, and get a set of estimates.

2.3 Alternating Least Squares (ALS)

ALS is a popular algorithm that can learn all of the components at once. In ALS, given the current iterates $\left\{u_{i}^{t}\right\}$, we consider the optimization problem

$$
u^{t+1}=\min _{\hat{u}_{i}}\left\|T-\sum_{i=1}^{k} \hat{u}_{i} \otimes u_{i}^{t} \otimes u_{i}^{t}\right\|_{F}^{2}
$$

We note that ALS is just a least-squares regression problem. It is quite hard to analyze rigorously, but very powerful in practice. Furthermore, the tensor power method can be interpreted as a "rank-1" version of ALS.

2.4 Analysis of the Orthogonality Assumption

In this section, we show why the initial orthogonality assumption that we made is reasonable.

2.4.1 Whitening

We can show that the orthogonality assumption is reasonable using whitening. We can do this in many applications of tensor decomposition in which we get access to not only $T=\sum_{i} \lambda_{i} u_{i}^{\otimes 3}$, but also to

$$
M=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}
$$

We assume that the u_{i} s are linearly independent, but not necessarily orthogonal. Then, we can use M to whiten the data so that u_{1}, \ldots, u_{k} become orthogonal.

We note that we can write M as $M=V D V^{T}$, where $V \in \mathbb{R}^{d \times k}$ and $D \in \mathbb{R}^{k \times k}$ is a diagonal matrix with the eigenvalues on the diagonal. Then, we let $W=V D^{-1 / 2} \in$ $\mathbb{R}^{d \times k}$ and $\tilde{u}_{i}=\lambda_{i} W^{T} u_{i}$. Then, we show that W standardizes the data as follows:

$$
\begin{aligned}
W^{T} M W & =D^{-1 / 2} V^{T} V D V^{T} V D^{-1 / 2} \\
& =D^{-1 / 2} D D^{-1 / 2} \\
& =\operatorname{Id}_{k} \\
& =\sum_{i} \lambda_{i}\left(W^{T} u_{i}\right)\left(W^{T} u_{i}\right)^{T} \\
& =\sum_{i} \tilde{u}_{i} \tilde{u}_{i}^{T}
\end{aligned}
$$

Thus, the \tilde{u}_{i} values are orthogonal because $\sum_{i} \tilde{u}_{i} \tilde{u}_{i}^{T}=\operatorname{Id}_{k}$. Then, if we let $T^{\prime}=T(W, W, W) \in \mathbb{R}^{k \times k \times k}$,

$$
\begin{aligned}
T^{\prime}(x, y, z) & =T(W x, W y, W z) \\
& =\sum_{i} \lambda_{i}\left\langle W x, u_{i}\right\rangle\left\langle W y, u_{i}\right\rangle\left\langle W z, u_{i}\right\rangle \\
& =\sum_{i} \lambda_{i}^{-1 / 2}\left\langle\tilde{u}_{i}, x\right\rangle\left\langle\tilde{u}_{i}, y\right\rangle\left\langle\tilde{u}_{i}, z\right\rangle
\end{aligned}
$$

Thus, $T^{\prime}=\sum_{i} \lambda_{i}^{-1 / 2} \tilde{u}_{i}^{\otimes 3}$. As a result, we have reduced linearly independent $u_{i} \mathrm{~s}$ to the orthogonal case, and so we can assume that the $u_{i} \mathrm{~s}$ are orthogonal in the iterative methods above.

2.4.2 Case with no Whitening

If we cannot whiten the $u_{i} \mathrm{~s}$, then they are only linearly independent and analyzing the iterative tensor methods becomes significantly more challenging:

Theorem 1. SV17 Given $T=\sum_{i=1}^{k} u_{i}^{\otimes 3}$ for "incoherent" unit vectors u_{1}, \ldots, u_{k}, ie satisfying

$$
\left|\left\langle u_{i}, u_{j}\right\rangle\right| \leq c_{\max } \leq \frac{1}{k^{1+\epsilon}}
$$

$O(\log k+\log \log d)$ iterations of tensor power method starting from random initialization yields a vector \hat{u} that is $O\left(k^{1 / 2} \max \left(c_{\max }, 1 / d\right)\right)$-close to some u_{i}, with high probability.

Some additional results are the following:

- Conjecture [SV17]: If u_{1}, \ldots, u_{k} are random unit vectors and $k \leq O\left(d^{3 / 2}\right)$, then tensor power method/gradient descent/ALS converges from random initialization to one of the components with high probability.
- In the overcomplete tensor decomposition case (when $k \gg d$), if you initialize at a point slightly better than random initialization, then the optimization landscape is benign [GM17].

There have been numerous works that show that the theory is still very far from explaining the empirical behavior of the tensor power method [SV17, WZ22].

References

[GM17] Rong Ge and Tengyu Ma. On the optimization landscape of tensor decompositions, 2017.
[Jen] Will the real jennrich's algorithm please stand up? Accessed: 2023-09-18.
[SV17] Vatsal Sharan and Gregory Valiant. Orthogonalized als: A theoretically principled tensor decomposition algorithm for practical use, 2017.
[WZ22] Yuchen Wu and Kangjie Zhou. Lower bounds for the convergence of tensor power iteration on random overcomplete models, 2022.

