
CS 224 Fall 2023 Scribes: Itai Shapira
09/13/2023

Lecture 3: Iterative methods for tensor decomposition

1 The Limitations of the Jennrich Algorithm

In the previous class, we discussed a simple algorithm called Jennrich’s algorithm
for tensor decomposition. To briefly recall, let T be a rank-k tensor in Rd×d×d,
expressible as

T =
k∑

i=1

λiu
⊗3
i

with {ui}ki=1 being linearly independent unit vectors and λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0.
Jennrich’s algorithm decomposes the tensor and precisely recovers {ui}ki=1.

However, Jennrich’s algorithm is not commonly used in practice for two primary
reasons:

1. Not Noise Robust: Despite its theoretical guarantees in a noiseless setting,
Jennrich’s algorithm is numerically finicky when it comes to handling noise.
When the tensor deviates even slightly from its low-rank form, the algorithm’s
performance declines sharply in terms of accuracy (see Figure 1)

2. Computational Overhead: The algorithm is dominated by dense matrix oper-
ations such as matrix multiplications and pseudoinversion. These operations
become the bottleneck, particularly when only partial contractions of the
tensor are needed in applications and we only need to know how the tensor
“acts” on individual vectors.

1

(a) (b)

Figure 1: (a) A comparison between two implementations of Jennrich’s algorithm
and ALS. The Y-axis represents a measure of accuracy in recovering a 25× 25× 25

tensor with added noise ([Unk21]) (b) The second plot presents a comprehensive
comparison of various algorithms, where we pay special attention to a curve labeled
“SimDiag,” which represents Jennrich’s algorithm. In a perfect noiseless setting,
Jennrich’s algorithm accurately recovers all tensor components. However, upon the
introduction of noise, its performance is the worst among the algorithms considered
([SV17])

.

2 Iterative Algorithms

In practice, practitioners commonly resort to three types of formally-interrelated it-
erative algorithms: Gradient Ascent, Power Iteration and Alternating Least Squares.

For the remainder of this discussion, let us assume that tensor T can be repre-
sented as: T =

∑k
i=1 λiu

⊗3
i where {ui}ki=1 are orthonormal vectors. The rationale for

this assumption will be addressed later (see Section 2.4).
Every tensor T can be associated with a polynomial p(x) of degree three with

coefficients that correspond to the entries of T :

p(x) =
∑
a,b,c

Tabcxaxbxc = T (x,x,x) =
k∑

i=1

λi⟨ui,x⟩3

For low-rank tensors with orthogonal components, it can be shown that the local
maximizers of p(x) over the unit sphere are precisely the set {ui}ki=1. Consequently,
our optimization problem simplifies to:

max
∥x∥=1

p(x) = max
∥x∥=1

k∑
i=1

λi⟨ui,x⟩3 (1)

2

To solve the optimization problem 1, we will discuss several approaches. Both
Gradient Ascent and Tensor Power Method aim to identify a single local optimum,
while our ultimate goal is to find all the local optima. One naive approach to
overcome this limitation, sometimes referred to as deflation, is that once we have
found a vector û ≈ ui, we can evaluate the polynomial at ui to get λi = p(ui).
Subsequently, we subtract this component from the original tensor T , effectively
reducing the tensor to one with k − 1 components. This allows us to focus on the
remaining components in subsequent iterations:

T − p(û)û⊗3 ≈
∑
j ̸=i

λju
⊗3
j

However, this method is not widely adopted due to the compounding errors that
can occur in each step. Even if the original tensor had no noise, the modified
tensor could introduce an error ϵ, which can exponentially accumulate in successive
iterations.

An alternative and more practical approach is to run those methods multiple
times with different, randomly chosen initializations. By doing so, we increase the
likelihood of converging to different local optima. Once we have obtained a set of
vectors û, we can cluster them to estimate the actual components of the tensor.

2.1 Gradient Ascent

To solve 1, we use a variant of gradient ascent tailored for constrained optimization.
The standard gradient ascent update rule is

x(t) = x(t−1) + η · ∇p(x(t−1)) = x(t−1) + 3η · T (:,x(t−1),x(t−1))

where η is the step size. However, we need to ensure that our iterations lie on the
unit sphere. To enforce this constraint, the update rule is modified to:

x(t+1) = proj
(
x(t) + 3η ·

(
Id − x(t)(x(t))T

)
· T (:,x(t),x(t))

)
(2)

where (Id−xxT) is the projection to the tangent space at x and proj is the projection
to the sphere y 7→ y/||y||. This update rule involves a projection onto the tangent
space as movement orthogonal to the tangent space at a given point is wasted
during projection back to the sphere.

3

Expanding 2, we get:

x(t+1) = proj
(
x(t) + 3η ·

(
T (:,x(t),x(t))− x(t)(x(t))TT (:,x(t),x(t))

))
= proj

(
x(t) + 3η ·

(
T (:,x(t),x(t))− x(t)T (x(t),x(t),x(t))

))
= proj

(
x(t) + 3η ·

(
T (:,x(t),x(t))− x(t)p(x(t))

)) (3)

2.2 Tensor Power Method

An appealing choice of step size in 3 is

η =
1

3p(x(t))

This adaptive step size, inversely proportional to the value of the polynomial p(x),
takes larger steps if the objective function is small and vice versa. More importantly,
it allows us to cancel out terms and simplify the update rule in 3 to:

x(t+1) = proj

(
T (:,x(t),x(t))

p(x(t))

)
= proj

(
T (:,x(t),x(t))

)
(4)

Equation 4 is a tensor generalization of the matrix power method. The matrix
power method is an efficient algorithm for finding the top eigenvector of a matrix,
and is notably faster than methods based on solving the roots of the characteristic
polynomial. If T were a matrix T =

∑k
i=1 λiuiu

T
i , the algorithm iteratively applies

T to an initial vector x =
∑

i ciui, and then normalizes x. The matrix T acts on x as:
Tx =

∑
i λiciui, and this vector is then normalized by its norm:

proj
(
T (:,x)

)
=
∑
i

λici(∑
j λ

2
jc

2
j

)1/2ui

.
Assume without loss of generality that λ1 ≥ λ2 ≥ . . . ≥ λk. Then intuitively,

the algorithm inherently focuses more on the first coordinate. To see this, consider
the ratio ri =

ci
c1

. After a single iteration, ri transforms to λi

λ1
ri; and after one more

iteration: (λi

λ1
)2ri. If λ1 is distinctively larger than λ2, . . . , λk, the ratios r2, . . . , rk will

asymptotically approach zero. This ensures that the vector converges to the top
eigenvector over successive iterations.

4

For tensors, the analysis is analogous: the tensor T acts on x to produce T (:

,x,x) =
∑

i λic
2
iui. This is then projected back to the unit sphere, resulting in the

new coefficients as

proj

∑
i

λic
2
iui

 =
∑
i

λic
2
i(∑

j λ
2
jc

4
j

)1/2ui.

Consider again how the ratio between coordinates ri =
ci
c1

evolve during this
procedure:

ri =
ci
c1

7→ λici
λ1c1

ri

If we assume without loss of generality that the first coordinate in our initial
(c1, .., ck) is such that

ρ := max
i ̸=1

λici
λ1c1

< 1

then ri decays and in the next step ρ transforms as:

max
i ̸=1

λi(λic
2
i)

λ1(λ1c21)
= max

i ̸=1

(
λici
λ1ci

)2

= ρ2 < 1

and

ri 7→ ρri 7→ ρ2ri 7→ ρ4ri 7→ ρ8ri

This implies that the tensor power method offer faster convergence than its matrix
counterpart and can achieve double exponential convergence rate to the eigenvector
with the largest λici. The particular eigenvector to which the algorithm converges
to depends on the initialization vector x.

2.3 Alternating Least Squares (ALS)

The key advantage of ALS over other approaches is that it doesn’t suffer from issues
of deflation or require restarting the algorithm multiple times. Instead, it is capable
of learning all components of the tensor simultaneously.

Given a tensor T , we aim to find optimal component vectors by solving a specific
optimization problem. At each iteration t, we maintain current estimates {ut

i}ki=1.
The optimization problem for the next iterate ut+1

i is defined as:

ut+1
i = argmin

ûi

||T −
k∑

i=1

ûi ⊗ ut
i ⊗ ut

i||2F

5

Here, the objective function is linear in terms of the optimization variable. This
linearity essentially reduces the problem to one of least-squares regression, making
it computationally efficient.

It is worth noting that the Tensor Power Method can essentially be considered as
a “rank-1” ALS, while ALS serves as a parallelized rank-k extension of the Tensor
Power Method.

Despite its complexity from a theoretical standpoint, ALS has garnered signifi-
cant attention for its robustness and computational efficiency in various real-world
applications.

2.4 On The Orthogonality Assumption

We now discuss theoretical justifications for the orthogonality assumption.
Let us assume we have a rank-k tensor T in Rd×d×d expressible as T =

∑k
i=1 λiu

⊗3
i ,

where ui are linearly independent but not necessarily orthogonal unit vectors. In
many practical scenarios, such as Gaussian mixture models, we can also obtain the
associated matrix M =

∑k
i=1 λiuiu

T
i .

We propose a ’whitening’ transformation, using M , that will help us retrieve
a tensor consisting solely of orthogonal components. First, we perform eigen-
decomposition of M as:

M = V DV T

where V is an orthogonal d×k matrix and D is a k×k diagonal matrix containing the
non-zero eigenvalues. We then define a new matrix W = V D−1/2, which normalizes
our data in the following sense:

W TMW = (D−1/2V T)(V DV T)(V D−1/2) = Id (5)

The transformation induced by W helps us define new vectors

ũi := λ
1/2
i W Tui

{ũi} forms an orthogonal basis as confirmed by Equation 5 and:

Id = W TMW =
k∑

i=1

λi(W
Tui)(W

Tui)
T =

k∑
i=1

(λ
1/2
i W Tui)(λ

1/2
i W Tui)

T =
k∑

i=1

ũiũi
T

Let’s now construct a new tensor, denoted by T ′, and defined by its contractions:

T ′(x,y, z) = T (Wx,Wy,Wz)

By the definition of tensor contraction, this is equivalent to:

6

T ′(Wx,Wy,Wz) =
∑
i

λi⟨Wx,ui⟩⟨Wy,ui⟩⟨Wz,ui⟩

=
∑
i

λiu
T
i WxuT

i WyuT
i Wz

=
∑
i

λ
−1/2
i ⟨x, ũi⟩⟨y, ũi⟩⟨z, ũi⟩

Therefore, we can express the new tensor T ′ in terms of orthogonal components:

T ′ =
∑
i

λ
−1/2
i ũi

⊗3

The main takeaway is that by using this matrix W , we are able to extract a
transformation that standardizes the data. Once the data is standardized, the effect
of applying this transformation is to convert ui into ũi. By taking W and reshaping
the original tensor T , we obtain a new tensor T ′ whose components are exactly the
orthogonal ũi. This reduces the problem back to the simpler case of orthogonal
tensors, which is often why practitioners prefer to work with the orthogonal case.

2.5 What if we don’t / can’t whiten?

When u1, . . . , uk are not orthogonal but merely linearly independent, analyzing
these algorithms becomes much more challenging.

Theorem 1 ([SV17]). Given T =
∑k

i=1 u
⊗3
i for “incoherent” unit vectors u1, . . . , uk, i.e.,

satisfying ∣∣⟨ui, uj⟩
∣∣ ≤ cmax ≤

1

k1+ϵ
,

O(log k + log log d) iterations of tensor power method starting from random initialization
yields a vector û that is O

(
k1/2max(cmax, 1/d)

)
-close to some ui, with high probability.

3 Empirical Mysteries

In this section, we explore the empirical behavior of tensor decomposition algo-
rithms, emphasizing the limitations of our current theoretical understanding. This
underscores the inherent difficulties in analyzing non-convex optimization prob-
lems, such as those encountered in neural networks.

7

(a) k = 400 (b) k = 1000 (c) k = 2000

(d) k = 4000 (e) k = 6000 (f) k = 8000

(g) k = 10000 (h) k = 12000 (i) k = 15000

Figure 2: each plot visualizes the behavior of tensor power methods for tensors
of varying ranks k and d = 400. The x-axis represents the number of iterations
of the tensor power method, while the y-axis quantifies the correlation between
the output of the algorithm and the closest among the original tensor components.
Different colors in each plot signify different training runs, initialized randomly.
Across these plots, peculiar non-monotonic behavior can be observed, particularly
when k is high, revealing occasional dips in the correlation value. This suggests
that the algorithm might be switching its convergence target between different
tensor components. As k increases beyond the dimensionality of the tensor (400)
the performance deteriorates significantly, reflecting the limitations of the tensor
power methods and hinting at an empirically observed critical threshold at which
the algorithm fails.

Our focus is on understanding the behavior of the tensor power method across
different training runs and dimensions. In Figure 2, we plot the behavior of the

8

tensor power method across different ranks k. Each graph illustrates the algorithm’s
output correlation with the closest original tensor component against the number
of iterations. Different colors within each plot represent separate training runs with
random initializations.

We find that the algorithm converges within roughly 10 iterations for low levels
of k. However, peculiar behaviors arise when we exceed the boundary k < d and
attempt to decompose tensors with more than 400 components. Even at 1000 or
2000 components, the tensor power method generally works, albeit requiring more
iterations for convergence.

Figure 3: Success probability of tensor power iteration for varying k and d. The
white line marks the threshold k = dl/2, beyond which the success probability
sharply declines. Blue regions indicate high success rates, while red regions point
to low success rates. The phase transition around log k = 2 log d suggests that tensor
power iteration is likely to succeed when k ≪ d2 and fail when k ≫ d2. We also
observe that polynomially many steps are necessary for tensor power iteration to
converge, since log T scales linearly with log d around the success/failure boundary.
The experiment involves running the tensor power method for 1000 iterations,
repeated 1000 times independently for each (k, d) pair.

Interestingly, as we increase the number of components, the correlation exhibits
non-monotonic behavior, indicating a complex landscape of vectors that the algo-
rithm is navigating. It suggests that during training, the algorithm may switch its
focus among different vectors, leading to drops in the correlation. This is especially
challenging to analyze due to this non-monotonic behavior. At around 8000 compo-
nents, we hit a computational limit, which correlates with k = d3/2. This threshold
is thought to be a boundary not only for tensor power methods but also potentially
for any polynomial-time algorithm. It is noteworthy that this computational thresh-
old is far below the information-theoretical limit of k = d2, indicating gaps in our

9

current understanding of tensor decomposition algorithms. More generally, there
exists a conjecture suggesting that the critical number of components k at which
tensor decomposition algorithms will begin to fail is captured by k = dℓ/2 for ℓ the
dimension of the tensor. This is illustrated in Figure 3 by recent work from [WZ23]
for ℓ = 4. Specifically, the tensor power iteration is likely to succeed when k ≪ d2

and likely to fail when k ≫ d2.

4 Summary

While Jennrich’s algorithm is theoretically viable, it is generally ill-suited for practi-
cal use due to its numerical instability and the computational burden of executing
dense matrix multiplications.

Instead, iterative methods like gradient ascent and tensor power method stand
out as more robust alternatives. These approaches are closely related, and are
difficult to analyze formally.

The existing theory falls short of fully explaining the algorithms’ empirical
behavior. This gap in our understanding sets the stage for our next lecture, where
we will explore provable overcomplete tensor decomposition by going beyond
worst-case analysis.

10

References

[SV17] Vatsal Sharan and Gregory Valiant. Orthogonalized als: A theoretically
principled tensor decomposition algorithm for practical use. In Interna-
tional Conference on Machine Learning, pages 3095–3104. PMLR, 2017.

[Unk21] Unknown. Will the real jennrich’s algorithm please stand up?, 2021.
https://www.mathsci.ai/post/jennrich/.

[WZ23] Yuchen Wu and Kangjie Zhou. Lower bounds for the convergence of
tensor power iteration on random overcomplete models. In The Thirty
Sixth Annual Conference on Learning Theory, pages 3783–3820. PMLR, 2023.

11

https://www.mathsci.ai/post/jennrich/

	The Limitations of the Jennrich Algorithm
	Iterative Algorithms
	Gradient Ascent
	Tensor Power Method
	Alternating Least Squares (ALS)
	On The Orthogonality Assumption
	What if we don't / can't whiten?

	Empirical Mysteries
	Summary

