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Lecture 24: Diffusion Models

This is the last lecture of the semester. We will conclude past discussions on
Bayesian inference and connect them to the setting of learning a distribution via
diffusion models, a successful approach both empirically and theoretically. The
material is largely adapted from [CCL+23] and references therein.

1 Primer on Diffusion Models

In generative models, one typically seeks to approximate a transport map from
S → T where S is some natural source distribution (Gaussian, uniform, etc.) and
T is the target distribution. In the focus of diffusion models, we will refer to the
process T → S as the “Forward Process”, adding noise to data, and the reversed
S → T map as the “Backward Process”, where sampling actually happens.

1.1 Forward Process

Conceptually, denoising diffusion probabilistic modeling (DDPM) starts with a for-
ward “noising” process characterized by a stochastic differential equation (SDE). For
clarity, we consider the simplest possible choice, which is the Ornstein-Uhlenbeck
(OU) process:

dX̄t = −X̄t dt+
√
2 dBt, X̄0 ∼ q, (1)

where (Bt)t≥0 is a standard Brownian motion in Rd. The OU process is the unique
time-homogeneous Markov process which is also a Gaussian process, with a sta-
tionary distribution equal to the standard Gaussian distribution on Rd. In practice,
it is also common to introduce a positive smooth function g : R+ → R2 and consider
the time-rescaled OU process

dX̄t = −g(t)2X̄t dt+
√
2g(t)dBt, X0 ∼ q,

but we stick with the choice g ≡ 1. In fact, it is easy to solve in this case that

Law(X̄t) = Law(e−tX̄0 +
√
1− e−2tG), G ∼ N (0, Id) ⊥⊥ X̄.

The forward process has the interpretation of transforming samples from the data
distribution q into pure noise. From the well-developed theory of Markov diffusions,
one sees that the law converges to a standard Gaussian exponentially fast in various
divergences and metrics such as the 2-Wasserstein metric W2.
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1.2 Backward Process

Given the “noising” forward process, one can thus try to invert the forward map
and construct the corresponding “de-noising” process. Conceptually, this reversed
process is similar to reversing a Markov Chain with time steps going to zero. We
write down the reverse formula and defer the justification to the next subsection.

In general, suppose that we have an SDE of the form

dX̄t = bt
(
X̄t

)
dt+ σt dBt,

where (σt)t≥0 is a deterministic matrix-valued process. Then the reverse process
also admits an SDE description. Namely, if we fix the terminal time T > 0 and set

X̄←t := X̄T−t, for t ∈ [0, T ]

then the process
(
X̄←t

)
t∈[0,T ]

satisfies the SDE

dX̄←t = b←t
(
X̄←t

)
dt+ σT−t dBt

where the backwards drift satisfies the relation

bt + b←T−t = σtσ
⊤
t ∇ ln qt, qt := Law

(
X̄t

)
.

Applying this to the forward process (1), we obtain the reverse process

dX̄←t =
{
X̄←t + 2∇ ln qT−t

(
X̄←t

)}
dt+

√
2 dBt. (2)

where ∇ ln qT−t
(
X̄←t

)
is “score”: the gradient of the density at time T − t of the

forward (and time t of the reverse) process.
To see why (2) is indeed the reversed SDE of (1), we need to apply the Fokker-

Planck equation, which states that:

Proposition 1 (Fokker-Planck). For any smoothly varying family of smooth vector fields
vt : Rd → Rd, the iterates xt of the SDE:

dxt = vt (xt) dt+
√
2dBt

are distributed according to qt satisfying the PDE

∂qt
∂t

= − div (qt · vt) + ∆qt. (3)

We defer the rigorous proof of Proposition 1 to standard textbooks of stochastic
analysis (e.g., pp. 47-49 of [PB13]) and present a heuristic in the next subsection.
Under Proposition 1, we observe that (1) and (2) are indeed time-reversals of each
other by pattern-matching the terms in (3).
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1.2.1 Derivation of the Fokker-Planck Equation

We briefly sketch a proof for Proposition 1. For any smooth test function ϕ : Rn → R,
let us compute the time derivative of the expectation A(t) = Eqt [ϕ] = E

[
ϕ (Xt)

]
.

d

dt
A(t) =

d

dt

∫
Rn

qt(x)ϕ(x)dx =

∫
Rn

∂qt(x)

∂t
ϕ(x)dx. (4)

On the other hand, for small η > 0 we have

Xt+η = Xt +

∫ t+η

t

vs (Xs) ds+
√
2
(
Wt+η −Wt

)
d
≈ Xt + ηvt (Xt) +

√
2ηZ +O

(
η2
)

where Z ∼ N (0, I) is independent of Xt. Then by Taylor’s expansion,

ϕ
(
Xt+η

) d
≈ ϕ

(
Xt + ηvt (Xt) +

√
2ηZ +O

(
η2
))

= ϕ (Xt) + η
〈
∇ϕ (Xt) , vt (Xt)

〉
+
√
2η
〈
∇ϕ (Xt) , Z

〉
+

1

2
2η
〈
Z,∇2ϕ (Xt)Z

〉
+O

(
η

3
2

)
.

Now we take expectations on both sides. Since Z is independent of Xt,

A(t+ η) = E
[
ϕ
(
Xt+η

)]
= E

[
ϕ (Xt) + η

〈
∇ϕ (Xt) , vt (Xt)

〉]
+ E

[√
2η
〈
∇ϕ (Xt) , Z

〉
+ η

〈
Z,∇2ϕ (Xt)Z

〉]
+O

(
η

3
2

)
= A(t) + η

(
E
[〈
∇ϕ (Xt) , vt (Xt)

〉]
+ E

[
∆ϕ (Xt)

])
+O

(
η

3
2

)
.

Therefore, by integration by parts, this second approach gives

d

dt
A(t) = lim

η→0

A(t+ η)− A(t)

η

= E
[〈
∇ϕ (Xt) , vt (Xt)

〉]
+ E

[
∆ϕ (Xt)

]
=

∫
Rn

〈
∇ϕ(x), qt(x)vt(x)

〉
dx+

∫
Rn

qt(x)∆ϕ(x)dx

=

∫
Rn

ϕ(x)
(
−∇ (qtvt) (x) + ∆qt(x)

)
dx. (5)

Combining (4) and (5) we get the desired equality since they hold for all ϕ.
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1.3 Score Matching

Consider the following sampling procedure: pick a large T such that qT is close to a
standard Gaussian, and run (2) with X̄←0 distributed according to N (0, Id). While
this is the most natural way to go, the biggest caveat is that one does not typically
know st := ∇ ln qt without knowing the distribution q0 a priori. Fortunately, such a
score function can be computed via the below lemma:

Lemma 1 (Tweedie’s Formula). Given x̃ = x+ e for x ∼ p and e ∼ N
(
0, σ2 · Id ),

E[x | x̃] = x̃+ σ2 · ∇ ln p̃(x̃)

where p̃ is the density for x̃.

The above lemma connects the score function to the Bayesian-optimal estimation
of the noise. In other words, estimating the gradient of log density is equivalent to
estimating the noise. In practice, one runs the following optimization over a class
of neural nets F given samples {xi} ∼ µ:

ŝt = arg min
NN∈F

1

n

n∑
i=1

∥∥σ−1t gi +NN(λtxi + σtgi; t)
∥∥2
2
, gi ∼iid N (0, Id) (6)

where NN is a function with input (x, t) for some explicit scaling of t → (λt, σt).

Under Lemma 1, it is not hard to check that the minimizing ŝt of (6) is indeed
equivalent to ∇ ln qt for

(
λt, σ

2
t

)
=
(
e−t, 1− e−2t

)
. This allows us an optimization

form that depends on samples xi only and not the distribution µ.

Proof of Lemma 1. By Bayes’ rule,

P[x | x̃] =
1

σ
√
2π

exp
(
− (x̃−x)2

2σ2

)
· p(x)

p̃(x̃)

so

E
[
x− x̃

σ2
| x̃
]
=

1
σ
√
2π

∫∞
−∞ exp

(
− (x̃−x)2

2σ2

)
· x−x̃

σ2 · p(x)dx

p̃(x̃)
.

Observe that on the other hand

p̃(x̃) =

∫ ∞
−∞

exp

(
−(x̃− x)2

2σ2

)
· p(x)dx

∇p̃(x̃) =
1

σ
√
2π

∫ ∞
−∞

exp

(
−(x̃− x)2

2σ2

)
· x− x̃

σ2
· p(x)dx,

and therefore

E
[
x− x̃

σ2
| x̃
]
=

∇p̃(x̃)

p̃(x̃)
= ∇ ln p̃(x̃)

concluding the proof.
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2 Discretization Analysis

Recall that (6) is a non-convex, over-parameterized optimization task on empirical
samples. Whether such optimization generalizes from {xi} to µ usually depends
highly on the structure of F (the class of neural nets) with even less known about
whether algorithms like SGD guarantees ERM in the first place. We divert from
such discussions and assume instead access to an oracle t → st such that for all t:

Eqt

[∥∥st (Xt)−∇ ln qt (Xt)
∥∥2] ≤ ε2sc (7)

To approximately implement the reverse (2), we first replace the score function
∇ ln qT−t with the estimate sT−t. Then, for t ∈ [kh, (k + 1)h] we freeze the value of
this coefficient in the SDE at time kh. It yields the new SDE:

dX←t =
{
X←t + 2sT−kh (X

←
kh)
}
dt+

√
2 dBt, t ∈ [kh, (k + 1)h]. (8)

In this sense, for every k, conditioned on X←kh, the next iterate X←(k+1)h has an explicit
Gaussian distribution where we integrate dBt directly.

As mentioned before: although the reverse SDE (2) should be started at qT , we
do not have access to qT directly. Instead, we instead initialize the algorithm at
X←0 ∼ N (0, Id), i.e., from pure noise.

Let pt := law (X←t ) denote the law of the algorithm at time t. The goal of this
work is to bound TV (pT , q), taking into account three sources of error: (1) the
estimation of the score function; (2) the discretization of the SDE with step size
h > 0; and (3) the initialization of the algorithm at pure noise rather than at qT .

2.1 Assumptions

In this lecture, we will assume that our distribution and score estimation satisfy the
following fundamental assumptions.

A1: (Lipschitz score). For all t ≥ 0, the score ∇ ln qt is L-Lipschitz.

A2: (Second moment bound). We assume that m2
2 := Eq

[
∥ · ∥2

]
< ∞.

A3: (Estimation error). We assume access to st satisfying (7) with some εsc > 0.

A1 and A2 are satisfied by most natural distributions and appear in existing works
as well (e.g., [LLT22]). It is worth noting that no assumptions on the Lipschitz-ness
of score estimates is required. Intuitively, it may appear as surprising since one would
expect to bound terms like |ŝ(X̂)−s(X)| along the way. Here our results can bypass
it without making this sometimes demanding assumption.
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Furthermore, we do not assume that q satisfies a log-Sobolev inequality. Hence,
our assumptions cover a wide range of highly non-log-concave distributions. Even
A1 could be relaxed by considering a different time-change in (1), although we
focus on the simplest setting in order to better illustrate the conceptual significance.

Finally, it is worth noting that we assume the estimation error (7) to be small
(o(1)) in L2, as opposed to L∞, which matches with the optimization objective (6)
and more closely reflects the error setting.

2.2 DDPM Convergence Theorem

Theorem 1 (Theorem 2 in [CCL+23]). Assuming assumptions A1, A2, and A3 hold, Let
pT be the output of the DDPM discretization (8) at time T , and suppose that the step size
h := T/N satisfies h ≲ 1/L, where L > 1. Then, it holds that (let γd = Law(N (0, Id))):

TV (pT , q) ≲
√

KL
(
q∥γd

)
exp(−T )︸ ︷︷ ︸

convergence of forward process

+
(
L
√
dh+ Lm2h

)√
T︸ ︷︷ ︸

discretization error

+ εsc
√
T︸ ︷︷ ︸

score estimation error

. (9)

To interpret this result, suppose that KL
(
q∥γd

)
≤ poly(d) and m2 ≤ d. Choosing

T ≍ log
(
KL
(
q∥γd

)
/ε
)

and h ≍ ε2

L2d
, and hiding logarithmic factors, we get

TV (pT , q) ≤ Õ (ε+ εsc)

for N = Θ̃
(

L2d
ε2

)
. In particular, in order to have TV (pT , q) ≤ ε, it suffices to have

score error εsc ≤ Õ(ε) in the said parameter setup.

Comparison to Langevin MCMC Another popular approach towards sampling
via SDE is the Langevin dynamics ([SE19]), where instead one considers the follow-
ing differential equation with stationary distribution Y ∼ q:

dYt = −∇ ln q (Yt) +
√
2 dBt. (10)

The pro of this approach is obvious, as it only asks for access to ∇ ln q as opposed to
∇ ln qt for many different t’s. However, the drawback is that such a process may
take a long time to mix for “multimodal” distributions (e.g. Gaussian Mixture
with two imbalanced clusters, see Figure 3 in [SE19]). In light of this, our diffusion
process can also be pictured as Langevin dynamics with varying noise levels to
accelerate mixing by passing freely between different modes.

Finally, we remark that the iteration complexity of N = Θ̃
(

L2d
ε2

)
matches SOTA

complexity bounds for the Langevin when sampling under a log-Sobolev inequality
([VW19]). This provides some evidence of the correct order one should expect.
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2.3 Discretization Error of Theorem 1

Let us briefly discuss the proof of Theorem 1, focusing on the most interesting
(non-trivial) part which is the discretization error. The key intuition is that, instead
of comparing the distance between the end of the true reverse process versus the
discretized reverse process, we compare the distance between the entire trajectory
of the true versus discretized reverse process which upper bounds the terminal
distance due to the data processing inequality. To do that, we need the following:

Lemma 2 (Girsanov’s Theorem). For t ∈ [0, T ], let Lt =
∫ t

0
bs dBs . Assume that

E
∫ T

0
∥bs∥2 ds <∞. Then, L is a martingale in L2. Moreover, if

EE(L)T = 1, where E(L)t := exp

(∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥2 ds

)
,

then E(L) is also a martingale and the process t 7→ Bt −
∫ t

0
bs ds is a Brownian motion

under some explicit change of measures.

The key idea is that for every possible discretized path with N steps, the prob-
ability assigned to this path is easy to compute as it is just N Gaussian densities
multiplied together. The remaining steps can be roughly summarized as (let Q←T be
the true law of process (2) and P←T be our estimated law of (8))1:

Bound on the discretization error To apply Lemma 2, we need to bound the error
between the estimated score at discretized endpoints to the actual score. Specifically,

EQ←T

[∥∥sT−kh (Xkh)−∇ ln qT−t (Xt)
∥∥2] ≲ ε2sc + L2dh+ L2m2

2h
2.

for all t ∈ [kh, (k + 1)h] holds.

Approximation argument For t ∈ [0, T ], let Lt =
∫ t

0
bs dBs where

bt =
√
2
{
sT−kh (Xkh)−∇ ln qT−t (Xt)

}
,

if t ∈ [kh, (k + 1)h]. The previous part translates to:

EQ←T

1

2

∫ T

0

∥bs∥2 ds ≲
(
ε2sc + L2dh+ L2m2

2h
2
)
T

We conclude by showing that the left-hand quantity upper bounds KL(Q←T ∥P←T )

via Lemma 2 and finish with Pinsker’s inequality.
1The following parts are crude over-simplifications and not technically correct. A rigorous proof

can be found at Section 5 in [CCL+23]
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3 Provable Score Estimation

In the last part of this note, we list several examples where diffusion models succeed
in achieving state-of-the-art sampling/learning algorithms in theoretical models.
This is one of the very few examples where empirically motivated methodology
inspires progress in highly theoretical problems.

At a high level, those examples succeed in the context that (approximately)
optimal algorithms for score estimation are known, and thus by connecting with
existing diffusion bounds we can sample approximately in polynomial time.

Sampling from the Sherrington-Kirkpatrick Model ([EAMS22]) For a given
matrix W ∈ Rn×n with entries i.i.d. sampled from N (0, 1/n), the goal is to efficiently
sample from:

PW (x) ∝ exp(−β

2
⟨x,Wx⟩)

with high probability. As is well-known that sampling from a worst-case Ising
model is #P-hard, the problem asks for the complexity of sampling from the average-
case Ising model. Classical sampling techniques such as the Glauber dynamics
guarantee sampling when the inverse temperature β < 1/4. In [EAMS22] and
subsequently [Cel22], it was shown that sampling all the way to β < 1 is possible
in normalized W2 via DDPM, and that sampling when β > 1 is geometrically hard
for algorithmically stable samplers. The result relies on showing that the denoising
function m(y, σ) := E[x|W ;x + σg = y] can be approximated by AMP for all σ.
Furthermore, an addition procedure of Natural Gradient Descent is applied on the
AMP estimate of denoising m such that certain Lipschitz conditions are met.

Posterior Sampling from the Spiked Model ([MW23]) Similar to the SK model,
suppose now one has a θ ∼ {−1, 1}n sampled from some Pθ and observes:

A =
β

n
θθT +W

and tries to sample θ given A. Such posterior distribution can be written as:

P(θ|A) ∝ exp(−β

2
⟨x,Ax⟩).

The more interesting setting is when Pθ is uniform, in which case the problem is
known as the Z2-synchronization. Similar to the SK model, Glauber Dynamics was
not known to mix beyond β > 1/4, which in this case is especially un-interesting
since A is statistically indistinguishable from pure noise W when β < 1.

Similar to the above approach, the key lies in approximating the denoising
function m(y, σ) = E[θ|A, θ + σg = y]. For Z2-synchronization, AMP is known to
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achieve Bayes optimal for all β > 0. However, it is unclear whether the algorithmic
output m̂ is Lipschitz and thus the guarantee cannot extend to all β > 0, but only
for large enough β.

Learning Mixtures of Gaussians ([SCK23]) Let us now turn to a problem with
different flavors: estimation of Gaussian Mixture Models. Consider:

q =
1

K

K∑
i=1

N (µi, Id),

our goal is to given samples estimate {µi}. While not a sampling task by itself, we
show that gradient descent (with a warm start) on the DDPM objective (6) recovers
{µi} up to additive error ε in poly(d, ε−1) when K ∈ O(1). The key lies in observing
that minimizing (6) in different regimes resembles classical learning algorithms such
as the Expectation-Maximization and Spectral algorithms. Specifically, gradient
descent closely approximates the power method on a large noise level, and E&M on
a small noise level. This result gives guarantees of effectiveness in learning scores
via commonly used methods such as Gradient Descent.
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