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Lecture 23: Approximate Message Passing:
Optimality of AMP for Z2 Synchronization

Overview

• Recap the AMP algorithm.

• MSE and Optimality of AMP.

• Free Energy Perspective of AMP.

• More applications and algorithms.

1 Recap Z2 Synchronization, AMP And More

Let X ∼ {±1}n be the signal vector. Let W ∈ Rn×n be the noise matrix with
Wij ∼ N (0, 1) for i 6= j and Wij ∼ N (0, 2) for i = j. We are given the following
noisy version of the signal XX>

Y =

√
λ

n
XX> +W,

where λ denotes the signal-to-noise ratio, and our goal is to learn the denoiser X̂
minimizing the following loss

MSE(X̂) :=
1

n2
EX,Y

∥∥∥X̂(Y )X̂(Y )> −XX>
∥∥∥2
F
.

Inspired by the belief propagation (BP) algorithm, we introduced the following
approximate message passing (AMP) algorithm

xt+1 =
1√
n
Y ft(xt)− ft−1(xt−1)bt, bt :=

1

n

n∑
j=1

f ′t(x
j
t),

x̂t+1 = ft+1(xt+1).

Here 1√
n
Y ft(xt) in the first equation can be seen as the zeroth-order (mean-field)

approximation term of the message passing. Similarly, −ft−1(xt−1)bt can be seen as
the first-order approximation term, or as the Onsager correction term that corrects
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the error in the message passing. Following intuitions from the BP algorithm, we
know that the output of our algorithm, i.e. x̂t+1, should approximate the marginal
expectation of X following the posterior distribution. Namely, the following holds
for the given signal Y

x̂it+1 ≈ EXi [X i|Y ].

1.1 State Evolution Analysis

In the asymptotic setting where n→∞, the AMP algorithm can be analyzed using
the “state evolution” method. Intuitively, when n→∞, the distribution of xt can
be well approximated by

xt ∼ N (µtX, σ
2
t I), (1)

which is independently sampled at every time step t. Here the state parameters µt
and σt evolve according to the following dynamics

µt+1 :=
√
λ · E[xft(µtx+ σtg)], σt+1 := E[ft(µtx+ σtg)

2]. (2)

where x ∼ {±1} and g ∼ N (0, 1). Therefore, the parameters µt’s and σt’s should
indicate how close our estimation stays to the true value X .

The theorem listed below formalizes the above intuition, i.e. Equation 1, and we
will directly use this intuition in the following proofs for simplicity.

Theorem 1. [BM11a] If ft’s are Lipschitz, then for any “nice” test function ψ : R2 → R
and any t,

lim
n→∞

1

n

∑
i

ψ(xit, X
i) = E[ψ(µtx+ σtg, x)]. (3)

With this theorem, we can approximate the average error of all coordinates of our
estimation (LHS of Equation 3) by some one-dimensional parameters that we can
easily keep track of (RHS of Equation 3).

To simplify the parameter dynamics (Equation 2), we choose the following
nonlinearity ft’s

ft(y) := E[x|µtx+ σtg = y],

which gives

µt+1 =
√
λ · E[x · E[x|µtx+ σtg]] =

√
λ · E[E[x|µtx+ σtg]

2] =
√
λ · σ2

t+1. (4)
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Here the last equality follows directly from the definition of σt. Moreover, we define

mmse(γ) := E[(x− E[x|√γx+ g])2] = 1− E[E[x|√γx+ g]2]. (5)

When γ = µ2
t/σ

2
t , the random variable

√
γx + g = (µtx + σtg)/σt can be seen as a

scaled version of µtx+ σtg. Therefore, it naturally follows that

σ2
t+1 = E[E[x|µtx+ σtg]

2] = 1−mmse(µ2
t/σ

2
t ). (6)

Finally, we further simply Equations 4 and 6 by letting γt = µ2
t/σ

2
t . Substituting

µ2
t = γtσ

2
t into the equations yields

γt = λσ2
t , σ2

t+1 = 1−mmse(γt),

which leads to the following dynamics

γt+1 = λ(1−mmse(γt)),

where λ is the signal-to-noise ratio we previously introduced.
To track the behavior of the γt’s, a natural idea is to iterate over the above

dynamics until we reach some fixed point. We denote the fixed point of γ for some
given parameter λ as γ∗(λ). The iteration results are plotted as follows

Here the x-axis is γ and the y-axis is f(γ) = λ(1 −mmse(γ)). It is clear from the
figure that for λ > 1, the curve y = f(γ) always intersects with line y = γ, leading
to one non-zero fixed point. However, for λ ≤ 1, there is no non-zero fixed point.
For such λ’s, the problem becomes information-theoretically impossible.

2 Guarantees for AMP

Now that we have enough knowledge about the AMP algorithm and its convergence
analysis in the asymptotic setting where n→∞, we now try to develop theoretical
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guarantees on the performance of its output. In this section, we will first compute
the MSE achieved by AMP. We then show that this is also the MSE achieved by the
Bayes-optimal estimator, i.e. the posterior mean, which in turn indicates that the
AMP algorithm is optimal for the Z2 synchronization in the asymptotic setting.

2.1 MSE for AMP

In this subsection, we calculate the MSE achieved by AMP. Recall that t is the
number of iterations of AMP, λ is the signal-to-noise ratio, and n is the dimension
of the signal vector X . The MSE is then defined as

MSEAMP(t;λ, n) =
1

n2
E[‖XX> − x̂t(x̂t)>‖2F ],

MSEAMP(t;λ) = lim
n→∞

MSEAMP(t;λ, n).
(7)

Now let x̃ := E[XX>|Y ] be the Bayes-optimal estimator. Similarly, we define the
MSE for this estimator as

MMSE(λ, n) =
1

n2
E[‖XX> − x̃x̃>‖2F ], MMSE(λ) = lim

n→∞
MMSE(λ, n). (8)

We have the following nice guarantee on MSEAMP(t;λ), which we will prove shortly

Lemma 1.

MSEAMP(t;λ) = 1−
γ2t+1

λ2
.

The following figure plots the MSE for the AMP algorithm for a problem with
n = 200 and some large enough t

It is clear that this statistical physics-based theoretical result perfectly matches the
algorithm behavior, which we haven’t seen too much in other techniques.
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Proof of Lemma 1. Direct expansion the Frobenius norm gives

MSEAMP(t;λ) = lim
n→∞

1

n2
EX,Y [‖XX> − x̂tx̂>t ‖2F ]

= lim
n→∞

1

n2
EX [‖X‖42]− 2EX,Y [

〈x̂t, X〉2

n2
]︸ ︷︷ ︸

I

+
1

n2
EX,Y [‖x̂t‖42]︸ ︷︷ ︸

II

.

Since X ∈ {±1}n, we know that ‖X‖22 = n, which implies that the first term is 1.
Now we analyze the term I . Notice that

lim
n→∞

1

n
〈x̂t, X〉 = lim

n→∞

1

n

n∑
i=1

x̂itX
i = lim

n→∞

1

n

n∑
i=1

ft(x
i
t)X

i

(i)
≈ Ex,g[ft(µtx+ σtg)x]

(ii)
= µt+1/

√
λ

= γt+1/λ,

where x ∼ {±1} and g ∼ N (0, 1). (i) is because of the state evolution intuition we
previously mentioned, i.e. Equation 1, and (ii) follows from the definition of µt+1,
i.e. Equation 4. Therefore

I = 2 lim
n→∞

1

n2
E[〈x̂t, X〉2] = 2γ2t+1/λ

2.

Similarly, for term II , we first notice that

lim
n→∞

1

n
‖x̂t‖22 = lim

n→∞

1

n

n∑
i=1

(x̂it)
2 = lim

n→∞

1

n

n∑
i=1

ft(x
i
t)

2

(i)
≈ Ex,g[ft(µtx+ σtg)

2]
(ii)
= σ2

t+1

= γt+1/λ.

Again, (i) is because of the state evolution intuition in Equation 1, and (ii) follows
from the definition of σt+1, i.e. Equation 6. Therefore,

II = lim
n→∞

1

n2
EX,Y [‖x̂t‖42] = γ2t+1/λ

2. (9)

Substituting the two terms back into Equation 2.1 gives

MSEAMP(t;λ) = 1− 2γ2t+1/λ
2 + γ2t+1/λ

2 = 1− γ2t+1/λ
2. (10)
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2.2 AMP Is Optimal for Z2 Synchronization

Now we show the MSE achieved by AMP (Lemma 1) is optimal by proving the
following lemma

Lemma 2.

MMSE(λ) = lim
t→∞

MSEAMP(t;λ).

The key to the proof is the “I-MMSE relation” given by the following lemma

Lemma 3. [GSV05]

1

n
· ∂
∂λ
I(XX>;Y ) =

1

4
MMSE(λ, n).

Here I(X;Y ) is the mutual information between X and Y . Intuitively, it indicates:

As λ increases, the information present in Y about the signal XX> increases at a rate
proportional to MMSE(λ).

Proof of Lemma 2. First, notice that

lim
n→∞

1

n
I(XX>;Y )|λ=0 = 0, lim

n→∞

1

n
I(XX>;Y )|λ→∞ = log 2.

This is because when λ→∞, knowing Y directly tells the value of XX>. Therefore
there is full information of XX> in Y. When λ = 0, Y has nothing to do with the
signal XX>. So there is no mutual information. Now applying Lemma 3 gives

1

4
lim
n→∞

∫ ∞
0

MMSE(λ, n)dλ

= lim
n→∞

1

n
I(XX>;Y )|λ→∞ − lim

n→∞

1

n
I(XX>;Y )|λ=0

= log 2.

On the other hand, since the MMSE is the optimal estimator, we trivially lower
bound the MSE of AMP as follows

1

4
lim
n→∞

lim
t→∞

∫ ∞
0

MSEAMP(t;λ, n)dλ ≥
1

4
lim
n→∞

∫ ∞
0

MMSE(λ, n)dλ ≥ log 2. (11)

For the rest of the proof, we will prove that the LHS of Equation 11 can be upper
bounded by log 2. Therefore, all inequalities are tight, which gives

1

4
lim
n→∞

lim
t→∞

∫ ∞
0

MSEAMP(t;λ, n)dλ =
1

4
lim
n→∞

∫ ∞
0

MMSE(λ, n)dλ.
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Substituting in the definitions of MSE(λ) (Equation 7) and MMSEAMP(t;λ) (Equation
8) completes the proof.

From Lemma 1, we know that

1

4
lim
n→∞

lim
t→∞

∫ ∞
0

MSEAMP(t;λ, n)dλ

=
1

4
lim
t→∞

∫ ∞
0

(1− γ2t
λ2

)dλ

=
1

4

∫ ∞
0

(1− γ2∗(λ)

λ2
)dλ.

(12)

To do the integral calculation, we let ψ(γ, λ) := λ
4
+ γ2

4λ
− γ

2
+ I(γ), which we will

prove to be the anti-derivative of 1− γ2∗(λ)
λ2

at γ = γ∗(λ). Here I(γ) := I(X;
√
γX + g)

for g ∼ N (0, 1). By definition, we have

∂

∂λ
ψ(γ, λ) =

1

4
(1− γ2

λ2
),

∂

∂γ
ψ(γ, λ)

(i)
=

γ

2λ
− 1

2
+

1

2
mmse(γ) =

1

2λ

(
γ − λ(1−mmse(γ))

)
.

Here in (i), we have used the fact that I ′(γ) = 1
2
mmse(γ), where mmse(γ) is defined

in Equation 5. Notice that for γ∗, we have γ∗ = λ(1−mmse(γ∗)). Then combining
the two terms together gives

d
dλ

ψ(γ∗(λ), λ) =
1

4
(1− γ2∗

λ2
) +

1

2λ

(
γ∗ − λ(1−mmse(γ∗))

)
=

1

4
(1− γ2∗

λ2
).

The clever choise of ψ enables us to cancel the terms w.r.t. ∂
∂γ
ψ(γ, λ) at γ = γ∗ and

conclude that ψ(λ∗(λ), λ) is the anti-derivative we are looking for.
Finally, substituting back into Equation 12 gives

1

4

∫ ∞
0

(1− γ2∗(λ)

λ2
)dλ = ψ(λ∗(λ), λ)

∣∣∣∞
0
. (13)

When λ→ 0, we have mmse(γ∗(λ)) ≥ 0 and I(γ∗(λ))→ 0. It naturally follows that

lim
λ→0

γ∗(λ) = lim
λ→0

λ(1−mmse(γ∗(λ))) ≤ lim
λ→0

λ = 0.

Therefore,

lim
λ→0

ψ(γ∗(λ), λ) = lim
λ→0

λ

4
+
γ2

4λ
− γ

2
+ I(γ) = 0. (14)
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When λ→∞, we have mmse(γ∗(λ))→ 0 and I(γ∗(λ))→ log 2. It is clear that,

lim
λ→∞

γ∗(λ) = lim
λ→∞

λ(1−mmse(γ∗(λ))) = lim
λ→∞

λ.

Therefore,

lim
λ→∞

ψ(γ∗(λ), λ) = lim
λ→∞

λ

4
+
γ2

4λ
− γ

2
+ I(γ) = log 2. (15)

Substituting Equation 14 and 15 back into Equation 13 gives

1

4
lim
n→∞

lim
t→∞

∫ ∞
0

MSEAMP(t;λ, n)dλ =
1

4

∫ ∞
0

(1− γ2∗(λ)

λ2
)dλ = log 2.

Finally, combining the above result with Equation 11 finishes the proof.

3 Free Energy Perspective for AMP

In this section, we will establish an optimization-based interpretation of AMP, which
relates the algorithm to the optimization of certain free energy.

To begin with, we first analyze the following simpler version of AMP with only
a mean-field approximation term

xt+1 =
1√
n
Y tanh(

√
λxt). (16)

It turns out that the fixed point x∗ of the above dynamics satisfies∇GMF(x∗) = 0 for
the following Gibbs free energy GMF(x)

GMF(x) = −H(ν)−
√
λ

2
√
n
Ez∼ν [z>Y z],

where ν is the product distribution with marginal expectations given by x. Namely,
this algorithm (Equation 16) is minimizing GMF(x) over product distributions.

Similarly, the fixed point x∗ of the AMP algorithm

xt+1 =
1√
n
Y tanh(

√
λxt)− tanh(

√
λxt−1) · bt (17)

satisfies∇GTAP(x∗) = 0 for the following TAP free energy GTAP(x)

GTAP(x) = −H(ν)−
√
λ

2
√
n
Ez∼ν [z>Y z]−

nλ

4
(1−Q(Ez∼ν [z]))2

where ν is the product distribution with marginal expectations given by x and
Q(v) = 1

n
‖V ‖2. Namely, AMP is minimizing GTAP(x) over product distributions.

Here the last term corresponds to the Onsager correction term −tanh(
√
λxt−1) · bt

in AMP (Equation 17).
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4 Other Applications And Algorithms

4.1 Beyond Z2 Synchronization

When the distribution of X is not uniform over {±1}n, AMP is not necessarily
Bayes-optimal. The following figure [Mio18] plots the MSE for AMP, where every
coordinate of X follows distribution P(X i = 1) = 0.05,P(X i = −1) = 0.95.

Unlike the Bayes-optimal estimator MMSE, AMP starts to get non-trivial results
only after λ ≥ 1. However, in such cases, AMP is still conjectured to be optimal
among all polynomial-time algorithms. In other words, people conjecture that the
failure of AMP in some regimes actually indicates computational hardness.

4.2 Beyond Low-Rank Matrix Estimation

Listed below are many other rigorous applications of AMP

• Compressed sensing: [DMM09], [BM11b].

• Generalized linear models: [Ran11], [SR14].

• Mixed linear regression: [TV23].

• Planted clique: [DM15].

• Group synchronization: [PWBM16].

• Nonnegative PCA, sparse PCA, etc.: [MR16], [DM14].

• Random polynomial optimization: [Sub23], [Mon19], [EAMS21].
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4.3 Other BP-Inspired Algorithms

There is another kind of BP-inspired algorithm based on non-backtracking operators
[KMM+13]. Recall that the AMP algorithm approximates belief propagation in the
regime where the interaction matrix is dense but every message is relatively small.
In another regime where we only have a sparse interaction matrix but every entry
has nontrivial strength, we can still try to approximate belief propagation with the
non-backtracking operator.

Consider a given graph G and the following nonbacktracking matrix B, whose
entries are indexed by edges and satisfy:

B(i,j),(k,l) = 1[j = k ∩ i 6= l]. (18)

Intuitively, this entry is only non-zero if we can walk along i to j and along j to l
without backtracking to i. Such matrices can be used for a well-studied problem
called “community detection” [Moo17, Abb17, MNS14, YP23].

4.4 Connecting Back to Distribution Learning

In the next lecture, we will see how to use the Bayes-optimal denoising algorithms,
of which the AMP algorithm is an instance, to get distribution learning guarantees
via diffusion generative modeling.
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