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Lecture 22: Approximate Message Passing:
Derivation and Optimality for Z2 Synchronization

1 Recap

We talked about Belief Propagation (BP) last time. We managed to do well on trees
and get exact marginals, but passing from trees to general non-cyclic graphs is quite
challenging.

These notes will on the study of Approximate Message Passing (APM). This is
a BP-inspired algorithm, which is conjectured to be optimal for a wide range of
inference problems. We will focus on a specific application to denoising low-rank
matrices.

2 Z2 Synchronization

Consider a regime with a hidden Boolean vector X ∼ {±1}n where we receive a

noisy rank-1 matrix Y =
√

λ
n
XX⊤ +W where the noise W is defined as

Wij ∼

N (0, 1) if i ̸= j

N (0, 2) otherwise

We choose λ such that Y has operator norm approximately
√
n. Our goal is to

estimate E[X|Y ]1. Another way to say this is as follows: given Y , find a a denoiser
X̂(Y ) minimizing

MSE(X̂) ≜
1

n2
EX,Y ∥X̂(Y )X̂(Y )⊤ −XX⊤∥2F .

As a baseline, the trivial estimate (X̂(Y ) = 0) achieves MSE = 1.

1By symmetry, E[X|Y ] = 0, but we can break symmetry e.g. by conditioning on X1 = 1, and the
algorithms we consider naturally break this symmetry.

1



wigner.png

Figure 1: (Wigner semi-circle law) When λ ≫ 1 The majority of eigenvalues are
within this semicircular bulk, but the top eigenvalue of Y on the right side begins
to escape this semi-circle.Caption

2.1 Spectral Method Baseline

Naively, we could consider taking the top eigenvector v of Y .

Theorem 1 (Baik-Arous-Peche ’04). “BBP transition” - the top eigenvalue of Y escapes
from “bulk” when λ > 1 ?.

When λ = 0, the histogram of eigenvalues of 1√
n
Y form a semi-circle from

Wigner semicircle law, but as λ≫ 1 the “top eigenvalue” escapes this semi-circular
bulk. Indeed, analytically one can find that

1√
n
λ1(Y ) →

λ+ 1
λ

λ > 0

2 if λ ≤ 1

1√
n
cos∠(X, v) →

.
√
1− 1/λ2 if λ > 1

0 if λ ≤ 1

The issue here is that the algorithm does not incorporate the prior on X . e.g.
when the prior is Gaussian, this algorithm is optimal, but this does not give the
right answer when X has the discrete structure as in our problem.
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2.2 Belief Propagation

For BP, we need some Gibbs measure. Let this be the posterior µ(x) ≜ Pr[X = x|Y ]

by Bayes and the fact X is uniform over the Boolean hypercube, we have

µ(x) ∝ Pr[Y |X = x]

∝ exp

−1

4

∥∥∥∥∥Y −
√
λ

n
xx⊤

∥∥∥∥∥
2

F


= exp

(
1

2

√
λ

n
x⊤Y x

)
This form looks familiar–it is simply an Ising model with a random interaction
matrix. As λ goes to ∞ (temperature goes to 0), the maximizer is simply the
underlying spike that arises when Y becomes close to xx⊤.

Recall the compatibility functions in this regime; for i < j

Ψij(xi, xj) = exp(Aijxixj) A ≜

√
λ

n
Y

Every entry of A is O( 1√
n
). Belief propagation update rules:

m i →k
σ [t+ 1] ∝

∏
j ̸=k

∑
s∈{±1}

m
j →i
s [t] · exp(Aijσs)

See the previous lecture on BP for a review on what the messages mean. Note that
generally we take this product over j ∈ ∂j\k, but since A has values for every entry,
this is simply all nodes except k.

Instead of marginal probabilities, we can equivalently parameterize this value
in terms of marginal expectations:

−m j →i

− [t] =⇒ m
j →i
s [t] =

1

2
+ s · x̂

j →i

t

2

Thus our update rule can be modified as follows

m i →k
σ [t+ 1] ∝

∑
s∈{±1}

m
j →i
s [t] · exp(Aijσs)

=
eAijσ + e−Aijσ

2

(
exp(Aijσ)− exp(Aijσ)

)
=
eAijσ + e−Aijσ

2

(
1 + tanh(Aijσ)x̂

j →i

t

)
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In order to compute the marginal expectations, we have

x̂
i →k
t+1 =

∏
j ̸=k(1 + tanh(Aij)x̂

j →i

t )−
∏

j ̸=k(1− tanh(Aij)x̂
j →i

t )∏
j ̸=k(1 + tanh(Aij)x̂

j →i

t ) +
∏

j ̸=k(1− tanh(Aij)x̂
j →i

t )

≈
∏

j ̸=k(1 + tanh(Aij)x̂
j →i

t )−
∏

j ̸=k(1− tanh(Aij)x̂
j →i

t )

exp

(∑
j ̸=k tanh(Aij)x̂

j →i

t

)
+ exp

(
−
∑

j ̸=k tanh(Aij)x̂
j →i

t

)

≈
∏

j ̸=k(1 + tanh(Aij)x̂
j →i

t )−
∏

j ̸=k(1− tanh(Aij)x̂
j →i

t )

exp

(∑
j ̸=k Aijx̂

j →i

t

)
+ exp

(
−
∑

j ̸=k Aijx̂
j →i

t

)

≈ tanh

∑
j ̸=k

Aijx̂
j →i

t


Where the second to last step comes from a a linear approximation since tanh is
linear close to 0. Define

xt+1 ≜
1√
n
Yijx̂

j →i

t =
∑
j ̸=k

1√
n
Yij tanh

(√
λx

j →i

t

)
.

Finally, from here we can substitute in the definition for A.

x̂
i →k
t+1 ≈ tanh

(√
λx

i →k
t+1

)
We are using tanh since this appeared naturally as we derived the formulae, but
our algorithm will be valid for any nonlinearity. Let this nonlinearity be denoted

ft(x
j →i

t ) ≜ tanh(
√
λx

j →i

t ).
We have a total of O(n2) total messages. The main question is whether we can

reduce the number of messages we need to track.
Attempt 1: All of the message out of a given vertex i are close to each other,

so we could try just tracking n messages, one per vertex. Let’s also replace the∑
j ̸=k

1√
n
Yijft(x

j →i

t )x
i →k
t+1 with

∑k
j=1

1√
n
Yijft(x

j →i

t )x
i →k
t+1 to make life easier. i.e.

xit+1 ≜
n∑

j=1

1√
n
Yijft(x

j
t) =⇒ xt+1 ≜

1√
n
Y ft(xt)

where ft(xt) applies ft to each entry of xt.
This is unfortunately an insufficient attempt. This approximation is analagous to

recursively applying the linear transformation 1√
n
Y to ft(xt). This can be thought of
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as a “mean-field approximation” because we are replacing the complex interaction
that happens at each node with simply an average of the messages that are coming
out of the given node.

Attempt 2: All of the messages out of a given vertex i are close to each other, but
these fluctuations get amplified nontrivially after BP iteration, leading to a crucial
correction to the mean field approximation. Our goal is still similar though, where
we want to simplify the n2 messages into one for each vertex. Consider rewriting
the sum ∑

j ̸=k

1√
n
Yijft(x

j →i

t )x
i →k
t+1 = xit+1 − δ

i →k
t+1

where

xit+1 ≜
n∑

j=1

1√
n
Yijft(x

j →i

t ), δ
i →k
t+1 ≜

1√
n
Uikft(x

k →i
t ) = O(

1√
n
)

Immediately, we have

xit+1 =
n∑

j=1

1√
n
Yijft(x

j →i

t )±O(1/
√
n)

Furthermore, since ft is tanh and hence Lipschitz, we can perturb x k →i
t to be the

average message xkt and obtain

δ
i →k
t+1 =

1√
n
Yikft(x

k →i
t )

=
1√
n
Yikft(x

k
t )±O(1/

√
n)

This allows us to write xit+1 as follows.

xit+1 =
n∑

j=1

1√
n
Yijft(x

j
t − δ

j →i

t )±O(1/
√
n)

If we Taylor Expand the inside of ft around xjt , we get

xit+1 =
n∑

j=1

1√
n
Yij

[
ft(x

j
t)− δ

j →i

t · f ′
t(x

j
t)

]
±O(1/

√
n)

Since δ is equal to the value of the previous message ft−1(x
i
t−1), we can write this by

what we wrote above. And we get

=
n∑

j=1

1√
n
Yijft(x

j
t)− ft−1(x

i
t−1) ·

∑ 1

n

n∑
j=1

(Yij)
2 · f ′

t(x
j
t)±O(1/

√
n)
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We note that Y 2
ij ≈ 1 since Yij was roughly sampled from a Gaussian. Let bt ≜

1
n

∑n
j=1 f

′
t(x

j
t). We can vectorize this and see that

xt+1 =
1√
n
Y ft(xt)− ft−1(xt−1) · bt

Where ft applies the nonlinearity entrywise. We can interpret the first term as the
mean-field approximation and the second term is similar to a kind of memory term
called an Onsager correction. Finally, plugging in our definition for x̂ i →k

t+1 , we have

x̂t+1 = ft+1(xt+1)

which is the estimate for the marginal distribution. One can consider random or
spectral initialization.

3 Analyzing AMP, State Evolution

As n → ∞, the behavior of the iterates of AMP is precisely captured by a certain
distributional recursion, state evolution.

Consider the following thought experiment. Suppose inductively that the t-th
iterate of AMP has normally distributed coordinates

xt ∼ N (µtX, σ
2
t · Id)

i.e. some noisy estimate of our signal X . If we can get that µt → 1 and σt → 0, then
we are done. But this is not quite possible. In general though, we should be able to
bound some of these terms.

Let us apply one step of AMP except we ignore the Onsager term but in ex-
change we pretend Y gets resampled from scratch and try to apply some inductive
argument.

xt+1 =
1√
n

(√
λ

n
XX⊤ +W

)
ft(xt)

∼

(√
λ

n
⟨X, ft(xt)⟩X,

1

n
∥ft(xt)∥2 · Id

)
This inner product is simply

√
λ

n
⟨X, ft(xt)⟩ =

√
λ
1

n

n∑
i=1

Xi · ft(µtXi + σtgi), gi ∼ N (0, 1)

≈
√
λE[x · ft(µtx+ σtg)], x ∼ {±1}, g ∼ N (0, 1)
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Hence we can approximate this inner product as

µt+1 ≜
√
λE[x · ft(µtx+ σtg)]

For the variance, we apply similar logic to obtain

σ2
t+1 ≜ E[ft(µtx+ σtg)

2]

≈ 1

n

∑
ft(µtXi + σ2

t gi)
2

=
1

n
∥ft(xt)∥2

The crucial reason why this works is because we are resampling W every time in
this thought experiment. We can initialize by setting

µ0 = E[xf0(x(0))], σ2
0 = E[f0(x(0))2]

We arrived upon this recursion by dropping the Onsager term and pretending
Y ′s randomness is fresh at every iteration of AMP. In reality, the randomness of Y
is fixed at the outset, and the the Onsager term makes this heuristic thought experiment
rigorous!

Theorem 2 (Bayati-Montanari ’11). If the ft’s are Lipschitz, then for any “nice” test
function ψ : R2 → R and any t,

lim
n→∞

1

n

∑
i

ψ(xit, xi) = E[ψ(µtx+ σtg, x)]

?

The heuristic derivation becomes rigorous from this theorem where our RHS is
the random sampling at each iteration compared to the LHS which corresponds to
the AMP evolution of our iterates. In the asymptotic limit, we only need to track
this two dimensional iteration µt σt.

We have a two dimensional recursion

µt=1 = E[xft(µtx+ σtg)], σ
2
t+1 = E[ft(µtx+ σtg)

2], x ∼ {±1}, g ∼ N (0, 1)

and we choose a clever nonlinearity

ft(y) = E[
√
λx|µtx+ σtg = y]
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This simplifies our values as follows

µt+1 = E[
√
λx · E[x|µtx+ σtg = y]]

=
√
λE[E[x|µtx+ σtg]

2]

=
√
λE[ft(µtx+ σg)2]

=
√
λσ2

t+1

Hence we have reduced the entire distributional recursion into

µt=1 =
√
λσ[t+ 1]2

We know that for the MMSE for the scalar denoising problem (MMSE for estimating
x given noisy observation µtx+ σtg where g ∼ N(0, 1)) we have:

MMSE = E[(X − E[X|µtx+ σtg])
2]

= E[X2]− E[E[X|µtx+ σg]2]

= 1− λσ2
t+1

where the second equality is simply expanding out the cross term and combining.
Define the mmse(γ) to be the MMSE for estimating X given

√
γx + ξ where

ξ ∼ N(0, 1). Hence if we plot mmse(γ) as a function of the the signal to noise ratio,
we see a curve that approaches 0. This means that we can simplify the distributional
recursion to be

σ2
t+1 = 1−mmse(λσ2

t )

The remainder of the derivation will be completed in the next lecture.
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