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Lecture 21: Belief Propagation, Bethe free energy

In this lecture, we describe the Belief Propagation algorithm for variational
inference on Gibbs measures. We then show that the Gibbs free energy on trees can
be written in terms of 1- and 2-wise marginals, motivating the notion of Bethe free
energy which generalizes the idea of Gibbs free energy to a relaxation of probability
measures. Finally we prove a novel connection between the fixed points of the
Belief Propagation algorithm and the Bethe free energy landscape.

We remind ourselves of our notation for Gibbs measures. Consider an undirected
graphG = (V,E) with V = [n] andE ⊂ {(i, j) ∈ V ×V : i ̸= j}. One calls a measure
µ over the discrete support {±1}n a Gibbs measure if it factors according to the
graph, i.e. there exists pairwise compatibility functions ψij : {±1}2 → R≥0 for each
(i, j) ∈ E such that

µ(x) =
1

Z

∏
(i,j)∈E

ψij(xi, xj).

Z is the partition function, the normalization constant of the probability distribution,

Z =
∑

x∈{±1}n

∏
(i,j)∈E

ψij(xi, xj).

It is also helpful to define an energy function E , where

E(x) =
∑

(i,j)∈E

log

(
1

ψij(xi, xj)

)
Z =

∑
x∈{±1}n

exp(−E(x)).

In last lecture, we showed that finding a measure η ≈ µ is equivalent to minimizing
the entropy H(η) and maximizing the average energy of E under η.

min
η

KL(ν||η) ⇐⇒ min
η

−H(η) + Ex∼η[E(x)] (1)

The RHS of Eq. 1 is known as the Gibbs free energy. See [MM09],[KZ22],[Mon11] for
a thorough introduction.

1 Belief propagation

Belief propagation is a general recipe for variational inference on Gibbs measures. It
is provably correct on trees, but practitioners often apply the algorithm to non-trees
to great success. First we shall consider the related problem of marginal estimation.
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1.1 Marginal estimation

Marginal estimation concerns computing quantities like Ex∼µ[xi]. Besides varia-
tional inference, it is important for Bayesian statistics. Assume we observe y and
want to characterize the posterior distribution of some x|y ∼ µy. The marginal
expectations {Ex∼µy [xi]}ni=1 yield the minimum mean squared error estimator,

{Ex∼µ(y)[xi]}ni=1 = argminx̂(·)Ex,y[∥x− x̂(y)∥2]
= Ey[Ex[∥x− x̂(y)∥2]].

For any given y, Ex[∥x− x̂(y)∥2] is minimized by setting x̂(y) to the posterior means.

1.2 Belief propagation warmup with ISET

To provide additional intuition, we consider an analogue of the belief propagation
algorithm for ISET. For x ∈ {±1}n, we define the set Sx ⊂ [n] s.t. i ∈ Sx ⇐⇒ xi =
1. We define µ to be uniform over all independent sets in G with the following
compatibility functions,

ψij(xi, xj) = 1[(xi, xj) ̸= (1, 1)].

We have µ(x) ̸= 0 iff for all (i, j) ∈ E both xi, xj are not 1. For general graphs G, this
is #P-complete, but this problem can be solved in polynomial-time with dynamic
programming if G is a tree. Let root correspond to the root of the tree, cv to denote
any child cv ∈ children(v), and Ta to denote the subtree rooted at a. We define

Zσ := the number of independent sets of G in which the root xroot = σ

µ(a) := uniform distribution over independent sets of Ta
Z(a)

σ = the number of independent sets of Ta where the root xa = σ.

Because the intersection of a subtree and an independent set must also be an inde-
pendent set, we can derive recurrence relationships for Z+, Z−. Any independent
set U containing the root cannot contain any children(root). The intersection of U
and the subtree Tchild(root) must also be an independent set of Tchild(root) that does not
contain child(root). When {c1, c2, . . . , ck} = children(root), then any independent
sets U1, U2, . . . , Uk of Tc1 , Tc2 , . . . , Tck that do not contain c1, . . . , ck, respectively, form
a unique independent set of V that contains the root, U1 ∪ U2 ∪ · · · ∪ Uk ∪ {root}.
Thus, we obtain the recurrence

Z+ =
∏

croot∈children(root)

Z
(croot)
− . (2)

By similar logic, we can conclude

Z− =
∏

croot∈children(root)

(Z
(croot)
+ + Z

(croot)
− ). (3)
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These recurrence relationships provide the basis of a bottom-up dynamic program-
ming algorithm for Z+, Z−. For all leaves i, we let Z(i)

+ , Z
(i)
− = 1. We can then use

Eqs. 2 and 3 to recursively compute Z(i)
+ , Z

(i)
− for all i ∈ G. Once we have Z+, Z−,

we can compute the marginal probability for all nodes in the tree,

Px∼µ[xroot = +] =
Z+

Z− + Z+

∝ Z+.

Belief propagation translates the idea of recursing on subtrees to graphs with cycles.

1.3 Belief propagation derivation

We define the subgraph V j→i to be the subgraph that is still connected to i once we
delete the edge (i, j) from G. V j→i contains all k ∈ V such that there is a path from
j to k that does not cross the edge (i, j) and all edges (k, ℓ) ∈ E such that there is a
path from j that includes the edge (k, ℓ) but not the edge (i, j).

It is also useful to define the subgraph V
j→i

, which contains Vj→i as well as i and
(i, j).
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We can define a Gibbs measure µ with respect to the subgraphs V j→i or V
j→i

by
including the subset of compatibility functions that corresponds to edges in the
subgraph. For notational convenience, we can index the Gibbs measure µ by its
subgraph µV j→i or µ

V
j→i . As in ISET, we want a set of self-similar expressions for

each each subgraph V j→i, V
j→i

that can then be used to solve for the marginals. The
primitive of our self-similar expressions is a message from node j to node i,

m
j⃝→i
σ = Pr

x∼µ
V j→i

[xj = σ].

We can also define a message from node j to i in the subgraph V
j→i

,

mj→ i⃝
σ = Pr

x∼µ
V
j→i

[xi = σ].

Note that we can express Z+ and Z− from the ISET example in terms of the mes-
sages,

Z+ ∝
∏
j∈∂i

m
j⃝→i
−

Z− ∝
∏
j∈∂i

(m
j⃝→i
+ +m

j⃝→i
− ).
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Crucially, we can also compute the marginal probabilities in terms of the messages.
By the law of total probability, we can express Prx∼µ[xi = σ] as a sum of the
probability over all s ∈ {±1}n where si = σ. We use the shorthand sK to denote
indexing s by the elements of K and s−K to denote indexing s by the elements of
[n]−K.

Pr
x∼µ

[xi = σ] ∝
∑

si=σ;s−i∈{±1}n−1

∏
(i,j)∈E

ψij(xi, xj) (4)

=
∑

si=σ;s−i∈{±1}n−1

∏
j∈∂i

ψij(xi, xj)
∏

(k,ℓ)∈Ej→i

ψkℓ(xk, xℓ)

 (5)

=
∏
j∈∂i

 ∑
sVj→i

∈{±1}|Vj→i|

ψij(xi, xj)
∏

(k,ℓ)∈Ej→i

ψkℓ(xk, xℓ)

 (6)

=
∏
j∈∂i

 ∑
sj∈{±1}

ψij(xi, xj)
∑

sVj→i−{j}∈{±1}|Vj→i|−1

∏
(k,ℓ)∈Ej→i

ψkℓ(xk, xℓ)

 (7)

∝
∏
j∈∂i

∑
s∈{±1}

ψij(xi, xj)m
j⃝→i
s . (8)

The factor of proportionality is the same for σ = ±1, so we can simply normalize
the RHS of 8 to compute the marginal probabilities. We can also relate the marginal
probabilities to the messages. When G is a tree, V i→k is the graph G excluding the
subtree under k.
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This means the message of V i→k is equal to

m
i⃝→k
σ = Pr

x∼{i}∪
⋃

j∈∂i\{k} Tj

[xi = µ] ∝
∏

j∈∂i\{k}

∑
s∈{±1}

ψij(xi, xj)m
j⃝→i
s . (9)

From Eq. 8, we know
∑

s∈{±1} ψij(xi, xj)m
j⃝→i
s is proportional to mj→ i⃝

σ . We have
the following recursive equations,

m
i⃝→k
σ ∝

∏
j∈∂i\{k}

mj→ i⃝
σ (10)

mj→ i⃝
σ ∝

∑
s∈{±1}

ψij(σ, s)m
j⃝→i
s (11)

Pr
x∼µ

[xi = σ] ∝
∏
j∈∂i

mi→ j⃝
σ ∝ m

i⃝→k
σ ·mk→ i⃝ (12)

For trees, we can compute the messages with a bottom-up dynamic programming

algorithm. We pick an arbitrary vertex as the root and assign m i⃝→j
σ = 1

2
for all leafs

i and parents j. Eqs. 9 and 11 allow us to recursively compute m i⃝→j
σ ,mj→ i⃝

σ for all
edges (i, j). Then we can apply Eq. 12 to compute the marginal probabilities.

Belief Propagation can also be adapted for more general graphs. Instead of

recursing, we iteratively update {m i⃝→j
σ ,mi→ j⃝

σ }(i,j)∈E,σ∈{±1} according to Eqs. 10
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and 11 until convergence. Because the updating step can be done in parallel over
all messages, this is very fast and efficient algorithm in practice.

Belief Propagation is extremely hard to analyze rigorously on the non-acyclic
graphs. Koehler 2019 proved that message-passing algorithms, e.g. Belief Propaga-
tion, find the global minimum of Bethe free energy for ferromagnetic Ising models, a
special class of Gibbs measures, on any graph [Koe19]. Belief Propagation may also
work more generally for sparse, random graphs because they “locally” resemble
a tree. Consider a random graph where each edge is included with probability
c/n and a vertex v. There are ≈ c neighbors of v or its descendants and thus ≈ cd

descendants of v within d edges of v. Because each child is equally likely to be
one of n nodes, the probability v does not have a path to itself of length ≤ d is
≈ (1− 1/n)c

d ≈ e−cd/n. When cd << n, i.e. the graph is sparse, this is unlikely.

1.4 Higher-order marginals

Belief Propagation can also be used to compute the 2-wise marginals when G is
a tree. Let (i1, i2) ∈ E and ∂(i1, i2) = ∂i1 ∪ ∂i2 − {i1, i2}. For j ∈ ∂(i1, i2), we let
i(j) denote the unique neighbor. Using the Law of Total Probability and Markov’s
property, we can marginalize over all other vertices V \∂(i1, i2).

Prx∼µ[(xi1 , xi2) = (σi1 , σi2)] ∝ ψi1i2(σi1 , σi2)
∑

s∈{±1}∂(i1,i2)

∏
j∈∂(i1,i2)

PV j→i(j) [xj = sj]ψi(j)j(σi(j), sj)

∝ ψi1i2(σi1 , σi2)
∏

j∈∂(i1,i2)

∑
sj∈{±1}

PV j→i(j) [xj = sj]ψi(j)j(σi(j), sj)

∝ ψi1i2(σi1 , σi2)
∏

j∈∂(i1,i2)

∑
sj∈{±1}

mj→i(j)
σi(j)

.

Interestingly, we can actually express the Gibbs free energy on trees in terms of 1
and 2-wise marginals. The average energy of a measure µ is

Eµ[E(x)] =
∑

(i,j)∈E

Eµ[log 1/ψij(xi, xj)].

Note that Eµ[log 1/ψij(xi, xj)] only depends on the pairwise marginals. The deriva-
tion that entropy can be expressed in 1- and 2-wise marginals is more involved.

Lemma 1. Let µ(xi) and µij(xi, xj) denote the 1- and 2-wise marginals. If G is a tree, then

µ(x) =
∏

(i,j)∈E

µij(xi, xj)
∏
i∈[n]

µi(xi)
1−|∂i|

Moreover, the entropy of G is a function of µ(xi) and µij(xi, xj).

7



Proof. We prove by induction. The base case (n = 1) is trivially true. When n > 1,
let i be any leaf of the tree connected by (i, j). We find Prµ[x = s] is equal to

Pr
µ
[x = s] = Pr

µ
[x[n]\{i} = s[n]\{i}] Pr

µ
[xi = si|x[n]\{i} = s[n]\{i}]

= Pr
µ
[x[n]\{i} = s[n]\{i}] Pr

µ
[xi = si|xj = sj]

= Pr
µ
[x[n]\{i} = s[n]\{i}]

µij(xi, xj)

µj(xj)
.

We can view Prµ[x[n]\{i} = s[n]\{i}] as the Gibbs measure of the subgraph V \{i}, the
tree where we remove (i, j) and i. By our inductive hypothesis, we can express this
in terms of the 1- and 2-wise marginals,

Prµ[x[n]\{i} = s[n]\{i}] = µV \{i}(x) =
∏

(k,ℓ)∈E\{(i,j)}

µkℓ(xk, xℓ)
∏

k∈[n]\{i}

µk(xk)
1−|∂V \{i}k|.

We obtain

Pr
µ
[x = s] =

 ∏
(k,ℓ)∈E\{(i,j)}

µkℓ(xk, xℓ)
∏

k∈[n]\{i}

µk(xk)
1−|∂V \{i}k|

 µij(xi, xj)

µj(xj)

=
∏

(k,ℓ)∈E

µkℓ(xk, xℓ)
∏
k∈[n]

µk(xk)
1−|∂k|.

Furthermore, we can calculate the entropy of µ in terms of the 1- and 2-wise
marginals,

H(µ) = −Ex∼µ[log Pr
µ
[x]]

= −Ex∼µ

log µkℓ(xk, xℓ) +
∑
k∈[n]

(1− |∂k|) log µk(xk)


= −

∑
(k,ℓ)∈E

Ex∼µ

[
log µkℓ(xk, xℓ)

]
−
∑
k∈[n]

(1− |∂k|)Ex∼µ

[
log µk(xk)

]
=
∑

(k,ℓ)∈E

H(µkℓ(xk, xℓ)) +
∑
k∈[n]

(1− |∂k|)H(µk(xk)).

If you are more curious about Belief Propagation, see [KE22].

2 Bethe Free Energy

Bethe Free energy is a generalization of Gibbs free energy to a certain class of pseudo-
distributions. More precisely, we can define Bethe Free Energy over marginals
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{νi, νij} that satisfy a local consistency property. Every valid Gibbs measure defines a
locally consistent set of marginals, but there may not exist a distribution for every
locally consistent set of marginals. The local consistency property simply states that
marginalizing over 2-wise marginals obtains the 1-wise marginals.∑

xj∈{±1}

νij(xi, xj) = νi(xi) ∀(i, j) ∈ E, xi ± {±1}.

These are also known as degree-2 Sherali-Adams constraints. Now we are ready to
define the Bethe Free Energy in terms of 1- and 2-wise marginals,

Gβ[ν] := −
∑

(k,ℓ)∈E

H(νkℓ(xk, xℓ)) +
∑
k∈[n]

(|∂k| − 1)H(νk(xk)) + Eν [E ].

Bethe free energy is a functional over the space of pseudo-distributions. We have
already seen an equivalence between Bethe Free Energy and Gibbs Free Energy
in trees. Because Belief Propagation is exact on trees, one could hope for a similar
equivalence between Belief Propagation and Bethe Free Energy on more general
types of graphs. In fact, we will show that the fixed points of Belief Propagation are
equivalent to the stationary points of Bethe Free Energy on all types of graphs.

Lemma 2. Fixed points of the Belief Propagation algorithm satisfy local consistency.

Proof. Belief Propagation yields the following marginals,

νi(σ) =
1

Zi

∏
j∈∂i

mj→ i⃝
σ

νij(σi, σj) =
1

Zij

ψij(σi, σj)m
i⃝→j
σi

m
j⃝→i
σj

,

with the normalizing constants Zi, Zij ,

Zi =
∑

σ∈{±1}

∏
j∈∂i

mj→i
σ

Zij =
∑

σi,σj∈{±1}

ψij(σi, σj)m
i⃝→j
σi

m
j⃝→i
σj

.

For any xi ∈ {±1}, we have∑
xj∈{±1}

νij(xi, xj) =
1

Zij

∑
xj∈{±1}

ψij(xi, xj)m
i⃝→j
xi

m
j⃝→i
xj

(13)

=
m

i⃝→j
xi

Zij

∑
xj∈{±1}

ψij(xi, xj)m
j⃝→i
xj

(14)

∝ m
i⃝→j
xi

m
j⃝→i
xi

(15)
∝ ν(xi). (16)
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where Eq. 14 applies the fixed point condition. The LHS and RHS marginalize to 1
when we sum over xi = ±1, so the proportionality is actually equality.

We can also rewrite Bethe free energy in terms of the partitions.

Lemma 3. We also define

Zi;j :=
∑

σ∈{±1}

m
i⃝→j
σ mj→ i⃝

σ .

Then

Gβ[ν] = −
∑
i∈[n]

logZi −
∑

(i,j)∈E

logZij +
∑

i∈[n],j∈∂i

logZi;j.

Proof. We can compute the entropy of the 2-wise marginals from our definition of ν,

−
∑

(i,j)∈E

H(νij) + Eν [E ] = −
∑

(i,j)∈E

Eνij log
1

νij(xi, xj)
−
∑

(i,j)∈E

Eνij log
1

ψij(xi, xj)

= −
∑

(i,j)∈E

Eνij log
ψij(xi, xj)

νij(xi, xj)

= −
∑

(i,j)∈E

Eνij log
Zij

m
i⃝→j
xi m j⃝→i

xj

= −
∑

(i,j)∈E

logZij +
∑

(i,j)∈E

Eνij [logm
i⃝→j
xi

+ logm
j⃝→i
xj

].

We can also compute the entropy of the 1-wise marginals from our definition of ν,

−
∑
i∈[n]

H(νi) = −
∑
i

Eνi log
1

νi(xi)

= −
∑
i

Eνi log
Zi∏

j∂im
j→ i⃝
xi

= −
∑
i

logZi +
∑
i

Eνi

∑
j

logmj→ i⃝
xi

 .
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It will be useful to compute
∑

i∈[n] |∂i|H(νi) using the Eq. 12 fixed point condition,

∑
i∈[n]

|∂i|H(νi) =
∑
i

∑
j∈∂i

Eνi log
1

νi(xi)

=
∑
i

∑
j∈∂i

Eνi log
Zi;j

m
i⃝→j
xi mj→ i⃝

xi

=
∑
i

∑
j∈∂i

logZi;j −
∑
i

∑
j∈∂i

Eνij [logm
i⃝→j
xi

+ logmj→ i⃝
xi

].

Finally, we can compute

Gβ[ν] = −
∑

(k,ℓ)∈E

H(νkℓ(xk, xℓ)) +
∑
k∈[n]

(|∂k| − 1)H(νk(xk)) + Eν [E ]

=

− ∑
(i,j)∈E

logZij +
∑

(i,j)∈E

Eνij [logm
i⃝→j
xi

+ logm
j⃝→i
xj

]


+

∑
i

∑
j∈∂i

logZi;j −
∑
i

∑
j∈∂i

Eνij [logm
i⃝→j
xi

+mj→ i⃝
xi

]


−

∑
i

logZi +
∑
i

Eνi

∑
j

logmj→ i⃝
xi




= −
∑
i∈[n]

logZi −
∑

(i,j)∈E

logZij +
∑

i∈[n],j∈∂i

logZi;j.

Note that Zi, Zi;j, Zij are invariant to the scaling of the messages, so we do
not need to normalize them to compute Bethe Free Energy. In general, there may
be many fixed points of the belief propagation algorithm that are not the correct
marginals. However, these fixed points are connected to Bethe Free Energy by the
following theorem.

Theorem 1. Take any graph G = (V,E), which may not be a tree. There is a 1-1 correpon-
dence between messages that are

fixed points of Belief Propagation ⇐⇒ stationary points for Gβ.

Proof. We compute the stationary points of Bethe free energy by differentiating with
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respect to the messages and ignoring irrelevant terms that do not depend on m i⃝→j
σi

,

∂Gβ[ν]

∂m
i⃝→j
σi

=
1

Zi;j

∂Zi;j

∂m
i⃝→j
σi

− 1

Zij

∂

∂m
i⃝→j
σi

Zij

=
mj→ i⃝

σi∑
σ∈{±1}m

i⃝→j
σ mj→ i⃝

σ

−
∑

σj∈{±1} ψij(σi, σj)m
j⃝→i
σj∑

σ,σj∈{±1}m
i⃝→j
σ m j⃝→i

σ

.

This vanishes for all i, j, σi iff

mj→ i⃝
σi

∝
∑
σj

ψij(σi, σj)m
j⃝→i
σj

.

This is exactly Eq. 11 from the Belief Propagation algorithm! We can also find Eq.10

in the Belief Propagation algorithm by differentiating with respect to mj→ i⃝
σi

,

∂Gβ[ν]

∂mj→ i⃝
σi

=
1

Zi;j

∂

∂mj→circledi
σi

Zi;j −
1

Zi

∂

∂mj→ i⃝
σ

Zi

=
m

i⃝→j
σi∑

σ∈{±1}m
i⃝→j
σ mj→ i⃝

σ

−
∏

k∈∂i\{j}m
k→ i⃝
σi∑

σ

∏
k∈∂im

k→ i⃝
σ

.

This equals 0 for all i, j, σi iff

m
i⃝→j
σi

∝
∏

k∈∂i\{j}

mk→ i⃝
σi

.

For a more in-depth discussion of Bethe Free Energy, see [Pfi14],[Mac11].
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