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Lecture 20: Statistical Physics I: Intro to graphical
models and variational inference

1 Wrapping up Cryptographic Hardness

1.1 Modern Results

Lemma 1 ([DV21]). Assuming security of Goldreich’s pseudorandom generator, MLP’s of
depth three are hard to learn under Gaussian inputs.

The lifting method used in the proof of this result (see Lec. 19) can be extended to
give SQ and membership query lower bounds for real valued continuous functions
by exhibiting functions close to being boolean except for a certain pathological space
of inputs [CGKM22]. Also, by slightly increasing the neural network complexity,
hardness for depth 4 MLP’s persists in the smooth analysis setting which is not fully
adversarial (i.e. start with worst-case input and perturb parameters with Gaussian
noise) [DSV23].

Lemma 2 ([BRST21]). Under the assumption that there are no polynomial time quantum
algorithms for certain (worst-case) lattice problems, learning mixtures of Gaussians is hard.

Proof. The assumption of the lemma is related to learning with errors/solving
a noisy system of linear equations over finite fields. The mixtures of Gaussians
problem is the continuous analog to learning with errors problem: you can think
of the parallel pancakes problem (which showed learning Gaussian mixtures was
hard in SQ) as solving a noisy system of linear equations modulo 1. It turns out
that learning with errors over finite fields is hard under the same assumption on
quantum algorithms, so some kind of reduction as in [GVV22] from finite fields to
the continuous analog can show hardness of mixtures of Gaussians.

1.2 Recap

• There are strong connections between cryptography/average-case complexity
(learning parity or learning with errors) and machine learning theory, but be-
cause distributions in cryptography tend to be discrete, immediate reductions
to ML theory tend to be pathological and unnatural or require agnostic noise
to simulate.
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• As a result, hardness results are restricted to models like statistical query
learning. However, these are surprisingly robust: usually a lower bound
for SQ is accompanied by a lower bound for cryptographic hardness a few
years later. These lower bounds to restricted models are easier to prove than
via reductions due to established recipes like the SQ dimension, moment
matching, etc.

• Ultimately, these recipes can show that in the SQ model it is not just techniques
like parity and low-degree approximation or Gaussian mixtures and moment
methods/dimensionality reduction that don’t work in the learning setting,
but that any algorithm in the restricted setting fails to efficiently learn. In
a sense, it is because these “signature methods" like moment matching or
low-degree approximation are “optimal" in the SQ model, so if these methods
fail, then no other method can work.

• Lower bounds help modulate the learning model: i.e., determining whether
the model is too general for positive learnability results requires the lens of
computational (time/compute complexity) lower bounds instead of statistical
(data size) lower bounds. For example, distribution-free agnostic learning
was once a target reasonable learnability setting, but it turned out to be too
computationally hard.

2 Physics, inference, and sampling

Many problems in machine learning and statistics can be framed as the following
inference setting. Suppose we have a prior distribution D where we draw a signal
X ∼ D. The signal undergoes some kind of noisy channel, and the observed “noisy
measurement" is Y . The goal is to understand how the knowledge of Y induces a
posterior belief on the original X . For example,

• Learning neural networks/teacher-student setting: If X denotes the weights
of a neural network F sampled from some complicated prior, Y is the set
{(xi, yi) : xi ∼ N (0, Idd), yi = F (xi)} of input and output pairs of F , where
the input is sampled from a multivariate Gaussian.

• Denoising: If X is an image from a distribution D, Y is the image with added
noise terms to the pixels. Can we recover the original X? This setting turns
out to be the core primitive of diffusion models for generative modeling.
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From Bayes Rule, we can immediately express the posterior on X given Y :

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)

P (Y = y)
. (1)

P (X = x) is our prior on X , P (Y = y|X = x) is the likelihood given a model of
the noisy channel, and P (Y = y) is the normalization constant, also known as the
partition function/evidence. We can write this in a suggestive manner:

P (X = x|Y = y) =
1

Z
· exp

(
−E(x)

)
, (2)

where the energy function E(x) = − log
(
P (Y = y|X = x)P (X = x)

)
. This is highly

reminiscent of the Boltzmann energy distribution from statistical physics. Finding
the minimal energy corresponds to finding the signal X at which the posterior is
maximized.
Further details on the background used in this and subsequent sections can be
found in [MM09], [KZ22], [Mon11], [WJ08], and [Mon14].

3 Undirected graphical models with pairwise interac-
tions

Consider the energy model given by

E(x) = −
∑

(i,j)∈F

logψij(xi, xj), (3)

with F some family of edges/subset of [n]× [n], inputs x ∈ {±1}n, and compatibility
functions ψij : {±1}2 → R. The posterior distribution is also known as the Gibbs
measure µ over {±1}n, where µ = 1

Z
· exp

(
−E(x)

)
and the partition function Z =∑

x∈{±1}n exp
(
−E(x)

)
.

3.1 Ising Model

Suppose we have the compatibility functions

ψij = exp
(
−βxixjAij

)
(4)

for some matrix A such that Aii = 0 (WLOG, since constants can be absorbed in
the normalization) and A is symmetric. In this setting β can be interpreted as the
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inverse temperature and A as the Hamiltonian or interaction matrix of the system. It
follows from the definitions above that the Gibbs measure is given by

µ ∝ exp

(
−β
2
x⊤Ax

)
. (5)

For some limiting cases with the inverse temperature β, notice the high temperature
limit β → 0 corresponds to a uniform distribution over {±1}n, while the low
temperature limit β → ∞ corresponds to the uniform distribution over x ∈ {±1}n
such that x⊤Ax is maximal.

3.2 Markov Property

We can also interpret A as the (negative) adjacency matrix of a weighted graph G.
Given i ∈ [n], define ∂i = {j ∈ [n] : (i, j) ∈ F} for some edgeset F corresponding to
A; i.e., the neighborhood of i where Aij ̸= 0.

The Markov property states that for S ⊆ [n] such that [n]/S consists of two disjoint
pieces in G, then conditioning on some assignment of spins/x values on S, the
resulting marginals on the two disjoint pieces are independent. For example, if
S = ∂i, then G is broken into i and everything not connected to i. Then the marginal
on i conditioned on some assignment to ∂i is independent of the rest of the graph,
i.e.,

P (xi = σ|x∂i = s) ∝ exp

−β
∑
j∈∂i

Aijsjσ

 . (6)

4 Variational Inference

In the types of inference problems detailed above, there are two fundamental tasks:
computing the normalization constant/partition function Z, and sampling from
the Gibbs measure µ. For discrete but exponentially sized domains, computing Z is
incredibly difficult. Take the example where ψij(xi, xj) = 1[xixj = 0]. Then no two
adjacent xi, xj can both be 1. It follows that Z counts the number of independent
sets in G, which is #P complete (very hard).

Since we cannot compute Z or sample from µ exactly, we must use approximative
methods, which include MCMC (Markov Chain Monte Carlo), variational inference,
or diffusion models. For now, we focus on variational inference, which aims to
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approximate µ by metric of distance from a family P of simpler distributions (e.g.
product distributions). Then the goal is the following:

minν∈PKL
(
ν||µ

)
. (7)

Of course, if P is the family of all distributions, then the minimizer is simply ν = µ

by Gibbs’ inequality on the KL distance. While SOS pseudodistributions expand
the space of distributions, variational inference diminishes it. The KL optimizer is
hard to evaluate, but we can get around it. Notice

Ex∈ν

[
log

ν(x)

µ(x)

]
= Ex∈ν

[
log

ν(x)
1
Z
· exp

(
−E(x)

)] = Eν [log ν] + Eν [E(x)]− log
1

Z
(8)

so
KL

(
ν||µ

)
= Eν [log ν] + Eν [E(x)]− log

1

Z
. (9)

For the purposes of minimization over ν, the last term is independent, so only
the first two terms – the negative entropy and average energy respectively – are
important. The sum can be written as the Gibbs free energy functional

G[ν] = Eν [log ν] + Eν [E(x)]. (10)

For the Ising model,

G[ν] = Eν [
β

2
x⊤Ax]−H(ν). (11)

When β is small, maximizing entropy minimizes G. When β is large, minimizing
average energy minimizes G. We will see how belief propagation is a heuristic
for minimizing G[ν] in the next lecture. Belief propagation is a natural dynamic
programming algorithm that gives an exact answer when the graph is a tree and
finds stationary points of the Lagrangian dual of G[ν] called the Bethe free energy.
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