
CS 224 Fall 2023 Scribes: Oam Patel, Ben Schiffer, Kevin Luo
11 September 2023

Lecture 2: Tensor Decomposition, Jennrich’s
Algorithm, and Applications

1 Historical Motivation

Charles Spearman (1863 - 1945) posited there are two types of intelligence: mathe-
matical and verbal. Any assessment then tested these two intelligences in different
quantities. Hence, if one constructed a matrix M ∈ Rn×m, where Mij is the test
score of the ith student on the jth test, he believed that M would admit a low rank
decomposition as M ≈ UV>, where U ∈ Rn×k and V ∈ Rm×k, with k = 2. Specifi-
cally, i-th row of U, [Ui,1, Ui,2]>, would consist of the math and verbal intelligence
of the i-th student, and the j-th row of V, [Vj,1,Vj,2], would contain the amount of
math and verbal testing of the jth test, such that Mij = Ui,1Vj,1 + Ui,2Vj,2.

Unfortunately for Spearman, U and V cannot be uniquely determined – we can
rotate both by an orthogonal matrix. However, under very mild assumptions, we
can solve this identifiability issue using tensors.

1.1 Solution to the rotation problem

In the Spearman’s problem, he essentially wished to decomposeM asM =
∑k

i=1 uiv
>
i ,

where {ui} and {vi} can be just viewed as the columns of U and V. It turns out that,
under some mild conditions, if we instead try to add auxiliary information to our
problem, and decompose an order 3 tensor M as M =

∑k
i=1 ui⊗vi⊗wi, where these

{wi} can be thought of as experimental conditions, the rotation problem disappears
under mild conditions on {ui}, {vi}, {wi}.

2 Tensor basics

An order 3 tensor T ∈ Rr×s×t is an array of numbers indexed as Tijk, with i, j, k ∈
[r]× [s]× [t].

Definition 1 (Tensor rank). The rank of an order 3 tensor T is the smallest k for which T

1

admits a decomposition of the form

T =
k∑
i=1

ui ⊗ vi ⊗ wi.

Writing T in this way is known as CP decomposition.

Order 2 tensors are just matrices, in which case the idea of rank corresponds to
our understanding of rank for matrices.

Like matrices, one can define notions of an operator norm, eigenvectors, and
eigenvalues, but it turns out that, while for matrices we can compute these quantities
through efficient algorithms like SVD, for tensors of order 3 or higher, they become
NP-Hard [HL09].

3 Tensor Decomposition

The following algorithm is attributed to Jennrich, but in fact the history behind the
name is murky, [Mat].

Theorem 1 (Jennrich). Given T ∈ Rd×d×d of the form

T =
k∑
i=1

u⊗3i

for u1, . . . , uk linearly independent, there is a poly(d) -time algorithm for recovering
u1, . . . , uk exactly.

Note that k ≤ d due to the linear independence condition, while the maximum
rank of a tensor is d2. In fact, this applies to a more general form of tensor, with
looser conditions:

Theorem 2. Given T ∈ Rd1×d2×d3 of the form

T =
k∑
i=1

ui ⊗ vi ⊗ wi

where {ui}, {vi}, {wi} satisfy

1. u1, . . . , uk are linearly independent

2. v1, . . . , vk are linearly independent

2

https://www.mathsci.ai/post/jennrich/
https://www.mathsci.ai/post/jennrich/

3. d3 ≥ 2 and no two wi, wj are collinear (note that d3 = 1 is the matrix case and hence
this restriction makes sense, also note that the {wi} need not be linearly independent,
but just none can be multiples of another)

then there exists a poly(d) time algorithm to recover {ui}, {vi}, {wi}.

4 Jennrich’s Algorithm

4.1 Tensor basics

Let T ∈ Rd1×d2×d3 be defined as

T =
k∑
i=1

ui ⊗ vi ⊗ wi.

Definition 2 (Tensor Contraction). Let (z1, z2, z3) ∈ Rd1 × Rd2 × Rd3 . Then the con-
traction of T along z1, z2, z3 is defined as

T (z1, z2, z3) =
d∑

a∈[d1],b∈[d2],c∈[d3]

Ta,b,c(z1)a(z2)b(z3)c.

Every tensor T has an associated polynomial p : Rd1 ×Rd2 ×Rd3 → R defined as

p(z1, z2, z3) =
∑
a,b,c

Tabc(z1)a(z2)b(z3)c

Definition 3 (Partial Contraction). The partial contraction, denoted T (:, :, z) : Rd3 →
Rd1 × Rd2 , is a matrix-valued function, defined as follows on rank-1 tensors, and extended
in the natural way to higher ranks. For δ = u⊗ v ⊗ w,

δ(:, :, z)ab = ua · vb · 〈z, w〉

In general, one has that

T (:, :, z)ab = T (ea, eb, z)

where ea is the standard basis vector with 1 in the a-th coordinate, and likewise for eb.
In particular, if T were order-2 (so a matrix), one has that

T (:, z) = Tz.

3

5 The Algorithm

Algorithm 1: JENNRICH(T)
Input: T ∈ Rd1×d2×d3

Output: Determines {ui}, {vi}, {wi} such that T =
∑

i ui ⊗ vi ⊗ wi
1 z, z′ ←i.i.d. Unif(S

d−1)

2 Mz ← T (:, :, z)

3 Mz′ ← T (:, :, z′)

4 (λi, ui)
d
i=1 ← EIGENDECOMPOSE(MzM

+
z′)

// A+ denotes pseudo-inverse; λi eigenvalues; ui
corresponding eigenvectors

5 (µj, vj)
d
j=1 ← EIGENDECOMPOSE((M+

z Mz′)
>)

// Match ui and vi by fact eigenvalues should be

reciprocal

6 {(ui, vi)}ki=1 ← {(ui, vj) | λiµj = 1} // exactly k such pairs

// now we solve for the w’s with a linear system

7 λ(a,b),c = (uc)a(vc)b // λ← Rd1d2×k

8 Tmatrix = reshape(T, (d1d2, d3)) // Tmatrix ∈ Rd1d2×d3

// Let W be the matrix with wi as its i-row, meaning

W ∈ Rk×d3 and Tmatrix = λW

9 W = λ+Tmatrix

10 return {(ui, vi, wi)}di=1

The algorithm above, also known as simultaneous diagonalization, was not
actually the algorithm Jennrich proposed (alternating least squares), as discussed in
the link above. Instead, this algorithm seems drawn from [LRA93].

5.1 Proof of Correctness

As an aside, first note that if a matrix A ∈ Rn×m has linearly independent columns,
then A+A = Im×m.

Lemma 1. In the notation above,

Mz ·M+
z′ = UDzD

−1
z′ U

+

and
M+

z ·Mz′ = (V >)+DzD
−1
z′ V

>

4

Proof. First note that

Mz =
k∑
i=1

(ui ⊗ vi ⊗ wi)(:, :, z)

=
k∑
i=1

ui ⊗ vi · 〈wi, z〉

= UDzV
>

Likewise, Mz′ = UDz′V
>, where

U ∈ Rd×k U = [u1, u2, . . . , uk]

V ∈ Rd×k V = [v1, v2, . . . , vk]

Dz ∈ Rk×k Dz = diag(〈w1, z〉, . . . , 〈wk, z〉)
Dz′ ∈ Rk×k Dz′ = diag(〈w1, z

′〉, . . . , 〈wk, z′〉)

.

Using this representation, we get that

Mz ·M+
z′ = UDzV

>(UDz′V
>)+

= UDzV
>(V >)+D−1z′ U

+

= UDz((V)+V)>D−1z′ U
+

= UDzD
−1
z′ U

+

where the final equality comes from the fact that V has linearly independent
columns. The same holds for M+

z ·Mz′ by a symmetric argument.

The lemma above show that MzM
+
z′ admits a diagonalization, and in particular,

its eigenvectors with nonzero eigenvalue are exactly the columns ofU , which are just
{ui}ki=1, where ui has eigenvalue 〈wi,z〉

〈wi,z′〉 . Likewise, this shows that the eigenvectors
with nonzero eigenvalue of (M+

z Mz′)
> are the columns of V , which are the {vi}ki=1,

now with eigenvalue 〈wi,z
′〉

〈wi,z〉 .
Thus, calculating the eigendecomposition of those two matrices, we obtain the

{ui}ki=1 and {vi}kj=1 up to permutation. We can then pair up them up appropriately
by using the fact that the corresponding eigenvalues of ui and vi are reciprocals
of one another. Note that the non collinearity condition of the wi necessitates that
there will be no duplicate nonzero eigenvalues.

Now it remains to compute the wi. This is done by setting up a linear sys-
tem. Define vectors λab ∈ Rk componentwise as λabi = (ui)a(vi)b. Define the ma-
trix W = [w>1 , w

>
2 , . . . , w

>
k]
>. Now observe that Tabc = 〈λab,W (c)〉, where W (c) =

5

((w1)c, (w2)c, . . . , (wk)c) denotes the c-th column of W . This is now just some linear
system, where the unknowns are the wi. note that we can write this linear system
as λ

To see that the solution to this is unique, we will summarize these constraints as
a matrix equation. Wrap the λab into a matrix, letting λ ∈ Rd1d2×k have rows which
are just the λab. Likewise, reshape T into Tmatrix ∈ Rd1d2×d3 ; done consistently, this
yields Tmatrix = λW.

Note now that left multiplication by λ+ now yields W, provided λ has linearly
independent columns, meaning it has column rank k. Therefore, if λ has full column
rank, then W = λ+Tmatrix. We conclude the proof with a lemma giving that desired
result.

Lemma 2. λ has full column rank.

Proof. Assume otherwise. Note that the i-th column of λ, denoted λ(i), is

(λabi)(a,b)∈[d1]×[d2] = ((ui)a(vi)b)(a,b)∈[d1]×[d2],

so λ(i) = vec(ui ⊗ vi) = vec(uiv
>
i). Then if there exists some linear dependence

among the rows, we have that there exist some constants ci, not all zero, such that

0 =
k∑
i=1

ciλ
(i)

0 =
k∑
i=1

ciuiv
>
i

Since the ui are linearly independent, we can find some vector xwhich is orthogonal
to u2, . . . , uk, but not u1. Then

k∑
i=1

cix
>uiv

>
i = 0

c1〈u1, x〉v1 = 0

which implies c1 = 0. We can repeat this for any index, yielding that ci = 0 for every
i, and hence no such dependence exists.

6

6 Applications

6.1 Mixture of Gaussians

6.1.1 A Historical Aside

Study of Gaussian mixtures began when (in)famous statistician Karl Pearson
wanted to study crabs on an island. He believed that there were some number of
species of crabs, existing in different relative proportions, each of which possessed
some mean characteristics, and his observations of the crabs on the island were
draws from this mixture distribution. He modeled this as a classic mixture of
Gaussians, and wanted to estimate the distribution over the classes, as well as the
mean characteristic of each class. More is detailed here, [Moo].

6.1.2 Method of Moments and Tensor Decomposition

The approach described below is attributed to [HK13].
Consider the classic mixture of Gaussians setting. Let λ1, ..., λk ∈ [0, 1] such that∑k
i=1 λi = 1 and µ1, ..., µk ∈ Rd. Note that there are a total of 2k unknowns. Now

suppose we obtain distributions from a Gaussian mixture distribution of k normal
random variables represented as

q =
k∑
i=1

λiN(µi, Id)

Formally, the samples from q are drawn with the following steps:

• Draw i ∈ [1 : k] with probability λi

• Sample g ∼ N(0, Id)

• Output µi + g

The goal is, given many samples from q, to estimate {µi}, {λi} up to small errors.
We will use the Method of Moments combined with tensors to achieve this goal.
First, note that the first moment (expectation) of a sample x drawn from q can be
written as

E[x] =
k∑
i=1

λiE[µi + g] =
k∑
i=1

λiµi

Now (unsurprisingly) we will find the expectations of a tensor.

7

http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html

E[x⊗3] =
k∑
i=1

λiE
[
(µi + g)⊗3

]
=

k∑
i=1

λiE
[
µ⊗3i + g⊗3 + µi ⊗ µi ⊗ g + µi ⊗ g ⊗ µi+

g ⊗ µi ⊗ µi + µi ⊗ g ⊗ g + g ⊗ g ⊗ µ+ g ⊗ µi ⊗ g
]

We can use the following lemma to simplify the above equation

Lemma 3 (Moments). With the variables defined as above, we have that

E[g⊗3] = E[µi ⊗ µi ⊗ g] = E[µi ⊗ g ⊗ µi] = E[g ⊗ µi ⊗ µi] = 0

and
k∑
i=1

λiE[µi ⊗ g ⊗ g + g ⊗ g ⊗ µi + g ⊗ µi ⊗ g] =

 k∑
i=1

λuµi

⊗3 Id

where we define

z ⊗3 Id :=
d∑
a=1

z ⊗ ea ⊗ ea + ea ⊗ z ⊗ ea + ea ⊗ ea ⊗ z

Proof. To note the first result, we observe that the odd moments of a Gaussian
distribution have expectation 0 by symmetry. For the second result, we can see that
E[g ⊗ g] is the identity matrix by construction, as it is the variance of a standard
multivariate normal g. This observation exactly simplifies the LHS to be equal to
the RHS.

Returning to the proof of the algorithm correctness, applying the above lemma
to simplify the expression E[x⊗3] gives

E[x⊗3] =
k∑
i=1

λiµ
⊗3
i +

 k∑
i=1

λiµi

⊗3 Id

Now, recalling that E[x] =
∑k

i=1 λiµi, we can rearrange terms and get that

E[x⊗3]− E[x]⊗3 Id =
k∑
i=1

λiµ
⊗3
i

8

Applying Jennrich’s algorithm to our empirical estimation of the LHS then
allows us to recover vi = λ

1/3
i µ⊗3i . It remains to compute the λi. We set up a linear

system to do this.

E[x] =
k∑
i=1

λiµi

=
k∑
i=1

λ
2/3
i vi

If the µi are all linearly independent, since k ≤ d (to even run Jennrich’s), this
system has a unique solution. The reference for this algorithm assumes that the
means are in general linear position, meaning there are no linear dependences, but
it would seem that even if there were multiple solutions, there would probably be
only one satisfying

∑
λi = 1.

6.2 Mixture of Exponentials

Reference for this section: [HK15].
Recall the setup from lecture 1, where we are given access to a function that, for

any ω where ||ω|| ≤ 1,

G : ω → 1

k

k∑
j=1

e2πi〈ω,µj〉

The goal in this problem is to (as in the Gaussian mixture case) recover the
µ1, ..., µk. The algorithm is as follows. Note the choice of constants is to ensure that
we are applying G to ω satisfying ||ω|| ≤ 1.

Algorithm 2: AIRYDISCJENNRICH(G)

Input: G : ω → 1
k

∑k
j=1 e

2πi〈ω,µj〉

Output: Distribution Parameters
1 ω1, ..., ωm ∈ R2 random from B(0.49)

// Note that B(0.49) is defined as the ball of radius

0.49 around the origin in R2

2 x1 = (0.02, 0) and x2 = (0, 0.02)

3 Tabc = G(ωa + ωb + xc)

4 Apply Jennrich’s algorithm to this low rank tensor and decompose into
T = 1

k

∑k
j=1 uj ⊗ uj ⊗ wj (Lemma 4)

5 Use the wj to reconstruct the desired parameters.

9

The key steps in the above algorithm are the last two, which rely on the specific
tensor decomposition of T that can be used to reconstruct our system parameters.
This is formalized in the following lemma.

Lemma 4. Define T as in the above algorithm, where

Tabc = G(ωa + ωb + xc)

Then the tensor decomposition of T can be rewritten as

T =
1

k

k∑
j=1

uj ⊗ uj ⊗ wj

where (uj)a = e2πi〈µj ,ωa〉 and (wj)c = e2πi〈µj ,xc〉.

Proof. Examining a single element of T , we have that by construction,

Tabc = G(ωa + ωb + xc) =
1

k

k∑
j=1

e2πi〈µj ,ωa〉e2πi〈µj ,ωb〉e2πi〈µj ,xc〉 =
1

k

k∑
j=1

(uj)a(uj)b(wj)c

where uj, wj are defined as in the lemma statement.
Therefore, we have exactly rewritten the Tabc as a sum of products of elements

of vectors, and therefore the Tabc can be rewritten as

Tabc =
1

k

k∑
j=1

uj ⊗ uj ⊗ wj

With this lemma, there is only one additional step to showing the correctness of
the above algorithm. Namely, once Jennrich’s algorithm gives us uj, wj , we need to
reconstruct the desired parameters. This follows from the fact that uj, wj give us
a system of equations containing the µj that can be directly solved for the desired
parameters.

Note that the application of Jennrich’s algorithm relies on {uj} to be linearly
independent and wi to be non-collinear, which is true for non-degenerate choices
of {µj}. What are we really doing compared to last time? Last time, we formed
matrices UUT and UDUT , cleverly chosen Hankel matrices by applying G to a grid.
Now, we are finding matrices UDZU

T and UDZ′UT . So all we changed was we
used two different matrices to diagonalize and find the columns of U . So Jennrich’s
algorithm is in some sense a generalization of Matrix Pencil Method. Furthermore,
this tensor approach works when the µj are arbitrary dimensions, unlike the matrix
pencil method which applies to matrices.

10

References

[HK13] Daniel Hsu and Sham M. Kakade. Learning mixtures of spherical gaus-
sians: Moment methods and spectral decompositions. In Proceedings of the
4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, page
11–20, New York, NY, USA, 2013. Association for Computing Machinery.

[HK15] Qingqing Huang and Sham M. Kakade. Super-resolution off the grid.
CoRR, abs/1509.07943, 2015.

[HL09] Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are NP
hard. CoRR, abs/0911.1393, 2009.

[LRA93] S. E. Leurgans, R. T. Ross, and R. B. Abel. A decomposition for three-way
arrays. SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083,
1993.

[Mat] Will the real jennrich’s algorithm please stand up? https://www.

mathsci.ai/post/jennrich/. Accessed: 2023-09-14.

[Moo] Pearson’s polynomial. http://blog.mrtz.org/2014/04/22/

pearsons-polynomial.html. Accessed: 2023-09-14.

11

https://www.mathsci.ai/post/jennrich/
https://www.mathsci.ai/post/jennrich/
http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html
http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html

	Historical Motivation
	Solution to the rotation problem

	Tensor basics
	Tensor Decomposition
	Jennrich's Algorithm
	Tensor basics

	The Algorithm
	Proof of Correctness

	Applications
	Mixture of Gaussians
	A Historical Aside
	Method of Moments and Tensor Decomposition

	Mixture of Exponentials

