CS 224 Fall 2023 Scribes: Lucia Gordon
November 13, 2023

Lecture 19: Cryptographic Reductions and Learning

This is the last unit on the computational complexity of learning. In the last
few lectures we talked mainly about statistical query as a recipe for getting lots
of different kinds of lower bounds. In general, proving reductions or natural
learning problems is hard. The traditional way of proving hardness results is not
as successful as using restricted models of computation and proving query lower
bounds. In this lecture we look at the reduction side, primarily from the vantage
point of connections to cryptography.

1 Early Connections to Cryptography

1.1 Cryptography and Learning
In 1984, L. G. Valiant defined PAC learning [Val84].

Whether the classes of learnable Boolean concepts
can be extended significantly beyond the three classes
given is an interesting question. There is circumstantial
evidence from cryptography, however, that the whole
class of functions computable by polynomial size cir-
cuits is not learnable. Consider a cryptographic scheme
that encodes messages by evaluating the function E
where k specifies the key. Suppose that this scheme is
immune to chosen plaintext attack in the sense that,
even if the values of E; are known for polynomially
many dynamically chosen inputs, it is computationally
infeasible to deduce an algorithm for Ex or for an ap-
proximation to it. This is equivalent to saying, however,
that E; is not learnable. The conjectured existence of
good cryptographic functions that are easy to compute
therefore implies that some easy-to-compute functions
are not learnable.

Suppose we have a black box that is invulnerable to learning, even if we can
arbitrarily query the box. If the box is implemented by a polynomial-size circuit,
then that implies general polynomial-size circuits are hard to learn. Thus, there
are models for which the inference task is easy (e.g., evaluating a neural network),

1

but given examples labeled according to this family of circuits, it would be hard to
recover the description of the circuit. Computation of a function and learnability of
a function are strictly different things.

1.2 Pseudorandom Function Families (PRF)

Roughly, a pseudorandom function family (PRF) is a family F of 2" functions f:
{0,1}™ — {0, 1}" that take n bits to n bits and fool any polynomial-time adversary
that tries to distinguish between the following two scenarios:

1. Random: f is sampled uniformly from the set of all Boolean functions
2. Pseudorandom: f is sampled from the PRF F

A pseudorandom function behaves almost as if it were random. The adversary can
query f polynomially many times at arbitrary inputs and must distinguish with
nontrivial advantage which of the two scenarios we are in. Note that the set of all
functions that take n bits to n bits is much larger than the pseudorandom function
family since the former is of size 22" whereas the latter is of size 2", so the number
of bits of randomness in the two scenarios are exponentially separate.

This is an even stronger model of learning than what we have considered so far.
Previously, we considered the setting where you get a bunch of labeled examples
(maybe drawn from a distribution), but here, we have a stronger notion of security.
The function is invulnerable even to adversaries that can arbitrarily query the
function, not just get random examples with labels according to some function.
Thus, if we have a function family that can implement pseudorandom functions,
the functions are hard to learn even in the stronger model where you can query the
function at whatever input you want.

1.3 PRFs from One-Way Functions

It turns out pseudorandom function families actually exist under very mild as-
sumptions in complexity theory [GGMB84]. A one-way function (OWF) is a function
f:{0,1}" — {0, 1} that is efficiently computable but hard to invert. This means
that given y = f(z) for a random z, it is computationally hard to find «’ such that
f(z') = y. This is the “minimal” assumption necessary for cryptography to be
possible.

Theorem 1. [GGM84| Pseudorandom function families exist if one-way functions exist.

[GGMB84] says you can implement PRFs with a polynomial-size circuit, and
these are hard to distinguish from purely random.

Corollary 1. [Val84|] Polynomial-size circuits are hard to PAC learn, even given the ability
to query them at arbitrary inputs (not just in the random example setting but learning from
membership queries).

Proof. A polynomial-time PAC learning algorithm would yield a polynomial-time
adversary who could determine whether the underlying function is truly random
or from a PRE. O

This is some initial evidence that cryptographic primitives provide some hard-
ness of learning results. The pros are that even though the assumption is very mild
we can get a hardness result from it, and the learner is very powerful, meaning
that even if the learner could query inputs arbitrarily, they still cannot learn. This
makes this a great result in the lower bound sense. However, it is not a great result
in the sense that it applies to worst-case circuits, but the circuits (pseudorandom
functions) labeling data in the real world may not be of this form. Moreover, from
the standpoint of proving lower bounds, it is easier to prove hardness results if a
function family is very expressive. Here, we would need to prove lower bounds for
the set of all polynomial-time-size circuits, which is a very rich family of functions.
This is the earliest possible cryptographic lower bound.

1.4 Public-Key Encryption

This makes a stronger assumption than merely the existence of one-way functions,
but you get hardness results for a weaker family of functions, making it a better
result for proving a lower bound. A public-key cryptosystem consists of three
algorithms: gen (generator), enc (encryptor), and dec (decryptor).

* gen(1") outputs a public key Pk (given to everyone) and a secret key Sk (only
given to the decryptor) given an input of size n

e enc(Pk, m) (randomly) encrypts message m € {0, 1} into poly(n) bits (cipher-
text) under Pk

* dec(Sk, c) decrypts a ciphertext c under Pk given Sk to recover m

This method satisfies correctness since dec(Sk, enc(Pk, m)) = m with all but negligi-
ble failure probability. It also guarantees security since it is impossible to distinguish
between the encryptions of 0 and 1. This is because for all poly-time algorithms A

[Pricsic [A(PK, enc(PL) = 1] — Prus [A(Pk, enc(Pk)) = 0] | < s

1.4.1 Trapdoor function

There are various ways of constructing these kinds of cryptosystems, one of which
is based on trapdoor functions. A trapdoor function is a one-way function for which
there exists an efficient algorithm I that takes as input f(z) along with a trapdoor
string t and outputs 2’ satisfying f(z) = f(2').

Consider the public-key cryptosystem RSA defined by z — ¢ mod n for n = pq
and e relatively prime to ¢(n) = (p — 1)(q — 1). The trapdooris d = e™' mod ¢(n).
In the trapdoor setting, the three algorithms work as follows. gen(1") has Pk be a
trapdoor function f and Sk be a trapdoor ¢. enc(Pk, m) encrypts a message m by
mapping through f. dec(Sk, c) decrypts a ciphertext ¢ by inverting using ¢. Note
this doesn’t quite work because we need to define “hard-core predicates.”

1.5 Public-Key Encryption + Hardness of Learning

It turns out there is a basic connection between public-key cryptosystems and
learning lower bounds.

Lemma 1. [KV94]] Suppose there is a public-key cryptosystem (gen, enc, dec) that you
conjecture is secure. Suppose the function class C contains all the decryption functions
dec(Sk,-) for all possible choices of secret key. Then C is hard to learn.

Proof. We want to break this cryptosystem using the learning algorithm. We train
on examples generated as follows.

1. Pick either m = 0 or m = 1, each with probability 1/2.

2. Then generate a labeled example (enc(Pk, m), m) (example is the bit’s encryp-
tion (ciphertext) and the label is the decryption (plaintext)).

It is very cheap to generate these once you have the public key, which we assume
everyone has access to. Consider running a PAC-learning algorithm on this dataset.
We know there is some decryption function that maps enc(Pk, m) to m. If that
decryption function were within the function class C, then running the PAC-learning
algorithm would learn a good approximation to the decryption function. However,
this violates the initial security assumption. O

Note that this hardness result only applies to an adversarial choice of input
distribution, so it is only a hardness result for distribution-free PAC learning.
There are several hardness results that were proven using this observation.

o [KV94]: the original paper that showed the reduction, which extended the
PRF function family results by showing hardness even for poly-size Boolean
formulas, deterministic finite automata of poly-size, and poly-size threshold
circuits with constant depth (families of functions less expressive than the
family of all possible Boolean circuits)

* [KS06]]: on intersections of poly-many halfspaces and also various stylized
neural networks over Boolean inputs (e.g., poly-size depth-2 circuits with
majority gates, depth-3 poly-size arithmetic circuits)

* [ABWI10]: under a certain public-key cryptosystem that they construct out
of various average-case assumptions like planted clique, functions that are
juntas (only depend on a small number of variables log(n) in the input) are
hard because they can implement the decryption

These results are better than the PRF results in the sense that they apply to more
structured families of functions. Even if the function family is less expressive
than the family of all Boolean circuits, they are able to demonstrate hardness.
The main drawback is that the input distribution over which they show hardness
is very unnatural. In the reduction above, the distribution was essentially just
ciphertext, but you are probably not going to encounter a dataset whose z values
are encryptions of messages according to some public-key cryptosystem. In general,
you would expect the distribution to look more like the uniform distribution or
something with much more structure.

1.6 Distribution-Specific Hardness: Noise Helps

There is a cryptographic hardness result that works when the input distribution
is nice, but the drawback is you need to assume the labels in the data are highly
noisy. For learning problems where there is label noise (e.g., agnostic learning),
it turns out there are classical ways of proving cryptographic lower bounds, so it
is relatively easy to prove hardness even when the input distribution is a known
“nice” distribution like Unif({£1}").

For an example, let us make the learning parity with noise (LPN) cryptographic
assumption, which we have tried to justify in previous lectures using the perspective
of statistical query. Let n > 0 and S C [d] be random. We are given a dataset
(z1,%1), -, (xn, yn) according to ~ {+1}? and

s wWp.l-n

Yy = .
—rg otherwise

There are various cryptosystems based on either LPN or a generalization of it
called “learning with errors” (LWE) due to larger finite field sizes. These kinds
of assumptions form the basis for a variety of cryptosystems that are meant to be
secure even against quantum computing. It turns out LPN is useful for trying to
show hardness for other problems. This is an instance where there is already noise
in the labels, so if we want to show hardness for some other problem with noise
in the labels, this is a natural starting point. Moreover, LPN is assumed to be hard
even when the inputs are chosen uniformly at random from the hypercube. So it is
precisely a setting where the input distribution is nice but there is a lot of noise in
the labels.

Lemma 2. [KKMSO08] Learning a halfspace agnostically means we do not assume the data
is exactly labeled by a halfspace, but we want to perform as well as possible compared to the
best linear classifier. Completing this task, even when the inputs are uniformly random,
is hard because if there were an algorithm for the task, it would imply an algorithm for
LPN. In other words, the existence of a polynomial-time algorithm for agnostically learning
halfspaces over the uniform distribution implies the existence of a polynomial-time algorithm
for learning parity with noise.

Proof. Let us take a particular kind of halfspace: the majority function over a
collection of bits, where the majority function is indexed by some subset of the bits
and outputs 1 if the majority of the bits in that subset are 1 and otherwise -1. It
essentially takes a majority vote over some subset of the input. The majority function
correlates with the parity function nontrivially, so if one could approximately learn
the former, one could get enough signal to distinguish between a dataset generated
by parity with noise and a dataset generated from purely random labels. You
could then use this distinguishing to boost your estimate and ultimately get the
underlying parity function. The majority function is well approximated by functions
we assume are hard to learn in the presence of noise. Thus, if we impose noise on
the majority function, it too will be hard to learn. O

A lot of results for agnostic learning are proved in a similar manner. You start
with a structured problem that is hard to learn in the presence of noise, and then
you try to map your functions of interest back to the structured problem.

1.7 Takeaways

This is all the classical knowledge about hardness of learning. Typically in the
past, cryptographic assumptions have been great for proving lower bounds for
learning worst-case functions (e.g., implement a decryption function in a public-key

6

cryptosystem or a PRF) either over worst-case input distributions (unnatural) or
over benign input distributions but with label noise. Thus, we end up with hard-
to-learn problems where either the function is unnatural or the data distribution
is unnatural or both. We have talked a lot about highly continuous problems (e.g.,
learning neural networks over Gaussian inputs), but all of these cryptographic
assumptions typically operate over the space of Boolean strings. Thus, these are all
specifically discrete settings.

We now transition to working in Gaussian space where our family of functions
is (worst-case) neural networks. In particular, we establish a cryptographic lower
bound for learning neural networks over Gaussian inputs. This lower bound gets
rid of all the caveats above: instead of working with worst-case functions, we are
working with smooth neural networks; instead of a worst-case input distribution
that is discrete, we have Gaussian inputs; and there is no label noise. We consider a
dataset of Gaussian inputs labeled perfectly by some neural network. Even neural
networks in some benign setup like smooth analysis where the network is not a
worst-case instance still turns out to be hard. We also touch on a cryptographic
lower bound for learning mixtures of Gaussians.

2 Crypto Lower Bound for Learning MLPs over Gaus-
sians

21 Crypto Hardness for MLPs

Theorem 2. [DV21l] Assuming security of Goldreich’s pseudorandom generator, MLPs of
depth 3 are hard to learn under Gaussian inputs.

This is referring to cryptographic hardness rather than statistical query hard-
ness. In particular, we mean cryptographic hardness for learning a real-valued,
continuous function over a “nice distribution” without label noise. Unlike the
CSQ lower bound we saw previously, this hardness result pertains to arbitrary
polynomial-time computation. However, the CSQ lower bound we showed was for
depth-2 networks, but here we have to work with more complex, depth-3 networks.

2.2 Goldreich’s Pseudorandom Generator (PRG)

A pseudorandom generator is a function that takes a very small amount of random-
ness and outputs what appears to be a large amount of randomness, which seems
counterintuitive from an information-theoretic perspective. However, the output

distribution is not close to random in a statistical sense, but rather be indistinguish-
able from random if you try to use polynomial-time computation. It is a function
that maps a small number of bits » to a large number of bits m.

Fo{£1) o {£1}"

is a PRG if no polynomial-time algorithm can distinguish between (a) Unif({£+1}")
(purely random bits) and (b) £'(Unif({£1}")) (¥ applied to a small number of purely
random bits) given a polynomial number of samples from both.

We will not assume that PRGs exist but rather that a particular candidate func-
tion is a PRG. Define a predicate function that maps a small number of bits to a
single bit.

P:{0,1}* - {0,1}

One example is the XOR-MA] predicate parameterized by a and b where k = a + b.
P(Z) = XOR—MA]a,b(Z) = (Zl ®..oD Za) S5 Maj(za+1, e Za_H))

The majority function outputs 1 or 0 depending on which type of bit has the
majority. Goldreich’s PRG is constructed as follows. Consider sampling a collection
of random subsets S, ..., S, C [n] of size k. Let us now construct a bipartite graph
as follows. Every node corresponding to a subset gets connected to the k bits that
are indexed by that subset, where the connections are random. This is visualized
in Figure|l| The generator will take as input z € {£1}" and map it to the m-tuple

bits subsets

0 ;
-z
NG

Figure 1: Random bipartite graph with k£ = 2

whose ith entry is given by evaluating the predicate on all the bits connected to the
ith node S;.
F(z) = (P(z]s1), -, P(2]s.)

8

where z|s represents the bits of »z indexed by S. We already know constructions
of PRGs based on one-way functions, but in practice we want pseudorandom
functions that are very simple to compute. For the PRG we just constructed, every
output of the function only depends on a constant number of bits, so this is practical
to implement. An influential paper [AIK04] delves into constructing cryptographic
primitives that are extremely efficient to implement, and Goldreich’s PRG is one
such example originally proposed by Goldreich. People conjecture it is secure
despite its simplicity. The family of hyper-efficient PRGs is called the local PRGs.

We now assume this function F' is a PRG. This means for every constant s > 1, 3
constant k (number of bits read in by each predicate) and predicate P : {0,1}* —
{0, 1} such that Goldreich’s PRG is a valid PRG.

2.3 Proving the Hardness of Learning MLPs

We use this Goldreich’s PRG assumption to prove the hardness of learning MLPs.
We do this in three steps. First, (I) we consider why we get hardness in a discrete
setting (Boolean-valued inputs {0, 1}"). Then, (II) we look at a simple way to “lift”
this hardness to the Gaussian setting. The lifting is naive and almost works but fails
for a crucial reason: the lifting produces an MLP with infinite weights (not a natural
function to learn), making the functions discontinuous. Finally, (III) we want to
show that even if the function is continuous and over Gaussians, it is still hard to
learn, which we show with the Daniely-Vardi gadget [DV21].

(I) How do we go from a PRG to an ML problem? In practice, we are given the
PRG, and the security assumption holds even if we know the structure of the graph.
If we had an algorithm for an ML problem, that would break the cryptographic
assumption, which is a contradiction. To get an ML problem from the PRG, construct
a classical ML dataset where the random subsets S, ..., S,, are the examples and the
labels are given by the output of the PRG P(Z|s). We have a string = that is either a
sample from the PRG or purely random bits. For every S;, we know the value of
the predicate on that subset, so the dataset is given by pairs (S;, P(Z|s,))|i;.

Treat each S; as a Boolean string via the following encoding. Given S =
(i1, ...,11) C [n], define an encoding z° € {0, 1}*". Consider k blocks each of length
n. In the jth block, the bit string is all 1s except for the 7;th bit that is 0. This means
in the first block the 0 goes in i;, in the second block the 0 goes in i, and so on.
This is a way of encoding a subset into a bit string. Now we need to show this is
computable by a neural network. We want to reduce the problem of distinguish-

ing pseudorandom inputs from random inputs to the problem of learning neural
networks over the hypercube. We need to show 3MLP N : {0, 1}** — {0, 1} such

that N(2%) = P(z|s) VS of size k, which means it outputs the correct label given an
encoding for a subset.

Proof. Consider the function mapping z° — P(z|s), which can be implemented via
the following DNFE.

Vie{0,13% st. P(b)>1 /\je[k] /N st. z#b;

Then you get z;; by reading the jth block and the /th index. This is a correct
implementation of the mapping, and it is a depth-2 Boolean circuit, which is a
legitimate MLP. O

Thus, we have shown that learning MLPs over bit strings as constructed above
is hard.

(II) We want to be able to convert from Boolean inputs to Gaussian vectors.
Observe a distribution over a single block is a distribution over {£+1}", which
is well approximated by the product distribution Bern(2=+)®". We want to take
this distribution and Gaussianize it. The bits in each block are not independent
but rather highly correlated since there is always exactly one zero. Suppose for
simplicity that we have hardness even when learning over Bern(”T_l)@’k”, where
the bits are drawn independently. Suppose we want to convert a single uniformly
random bit to a Gaussian: Bern(1/2) — N(0,1). One way is to output a half-
Gaussian.

—y b=0

be{0,1} —
{0, 1} L b1

where v ~ N(0,1)]y > 0, a “half Gaussian,” shown in Figure 2 We can now

Figure 2: Half Gaussian

consider other kinds of biases instead of 1/2. Suppose we have Bern(”-1), and we

10

want to output a Gaussian NV (0, 1). We can now Gaussianize the bit as follows.

Y~ N(O, Dy >t b=0

be{0,1} —
Yy~ N@O1)y<t b=1

This mapping is visualized in Figure (3| This converts the inputs to Gaussian, but

N

Figure 3: The red line is z = ¢, the blue curve is the b = 0 case, and the green curve
is the b = 1 case.

we also need to ensure the labels are correctly generated. The function we get out
of the naive lifting procedure is unfortunately going to be discontinuous. We have
gone from Bern(“1)® — A(0,1)®*", and now we the MLP N(z) and want to get
out something that correctly labels the Gaussian dataset. One trivial solution is with
N’(g) = N(threshold(g)) for a Gaussian input g and N the function we constructed
in the Boolean setting.

threshold(g); = 1[g; > t]

This function is visualized in Figure[d] We had a process to convert bits to Gaussians,
and now we want to take Gaussians and map them back into maps them back to
the original distribution on the bits, which is given by the threshold function. This
essentially undoes the Gaussianization and is a naive way of lifting to the Gaussian
space. However, the threshold function is discontinuous, with a discontinuity at
t. Approximating this discontinuity well would require super-polynomially-large
weights in the neural network.

(IIT) Let us try approximating the threshold with a different function that
looks like a ramp. We could implement the ramp using a neural network with
polynomially-large weights. Consider N (ramp(g)), which is entirely continuous
and works for all inputs g except those where a coordinate lands in the “danger

11

Figure 4: Threshold function with = ¢ shown in red.

zone.” Let us construct a penalty function Gpenaty that is very large in the danger
zone and gradually slopes down to zero on both sides. The penalty function will
zero out the label for inputs with a coordinate in the danger zone.

H(g) = ReLU N(ramp(g)) - Z Gpenalty(gji)

JElk],i€[n]

The second term (known function G(g)) is large if g has a coordinate in the danger
zone, making H(g) = 0. These functions and zones are displayed in Figure 5| Let
us start with the Boolean dataset we want to Gaussianize and draw (x, m(z)). We
can Gaussianize z to get g. The label is then given by

0 g is in the danger zone
label = { N(z) g is in the good zone
ReLU(N(z) — G(g)) g isin the medium zone

We have devised this particular neural network by wrapping a network that does
not work with a ReLU and a penalty function. The penalty function is a known
neural network, so we can simulate information from it and use that to modify
the labels to get out a continuous-valued problem that is hard because the original
problem is hard. The main trick was the penalty function that allows us to zero out
points in the danger zone, and for the points that are not perfectly Boolean, we can
simulate access to those labels because we know the penalty function, completing
the reduction.

12

Figure 5: The solid red line is # = t. The ramp is shown in blue. The penalty
function is shown in solid green. The dotted red lines mark the outer boundaries of
the danger zone and the inner boundaries of the medium zone. The dashed green
lines mark the outer boundaries of the medium zone and the inner boundaries of
the good zone. Points outside the medium and danger zones are in the good zone.

References

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryp-
tography from different assumptions. In Proceedings of the Forty-Second
ACM Symposium on Theory of Computing, STOC "10, page 171-180, New
York, NY, USA, 2010. Association for Computing Machinery.

[AIKO04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in nc/sup
0/. In 45th Annual IEEE Symposium on Foundations of Computer Science,
pages 166-175, 2004.

[DV21] Amit Daniely and Gal Vardi. From local pseudorandom generators to
hardness of learning. CoRR, abs/2101.08303, 2021.

[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. In 25th Annual Symposium on Foundations of Computer Science,
1984., pages 464-479, 1984.

[KKMS08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A.

13

Servedio. Agnostically learning halfspaces. SIAM Journal on Computing,
37(6):1777-1805, 2008.

[KS06] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness
for learning intersections of halfspaces. In 2006 47th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’06), pages 553-562,
2006.

[KV94] Michael Kearns and Leslie Valiant. Cryptographic limitations on learn-
ing boolean formulae and finite automata. J. ACM, 41(1):67-95, jan
1994.

[Val84] L.G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142,
nov 1984.

14

	Early Connections to Cryptography
	Cryptography and Learning
	Pseudorandom Function Families (PRF)
	PRFs from One-Way Functions
	Public-Key Encryption
	Trapdoor function

	Public-Key Encryption + Hardness of Learning
	Distribution-Specific Hardness: Noise Helps
	Takeaways

	Crypto Lower Bound for Learning MLPs over Gaussians
	Crypto Hardness for MLPs
	Goldreich's Pseudorandom Generator (PRG)
	Proving the Hardness of Learning MLPs

