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Lecture 18: Statistical Query Lower Bounds II

1 Overview

• Statistical query (SQ) model

• SQ lower bounds for supervised problems

– SQ Lower bounds for noisy parity

– SQ dimension and the general recipe for proving correlational SQ (CSQ)
lower bounds

– SQ Lower bounds for multilayer perceptrons (MLPs)

– SQ Lower bounds for real-value functions

• SQ lower bounds for unsupervised problems

– SQ lower bounds for unsupervised problems

– How to lower bound statistical dimension

2 Statistical query (SQ) model

We define the statistical query (SQ) model of computation. We consider an algorithm
that only interacts with dataset {(zi)} through some ψ : Rm → R. The samples
are in the forms of E[ψ(z)] + ζ, where ζ is some noise with |ζ| ≤ τ for tolerance
τ corresponding to

√
1/N (N is the number of samples). This model captures

essentially any known learning algorithm except for Gaussian elimination.

3 SQ lower bounds for supervised problems

3.1 SQ Lower bounds for noisy parity

We start with the task of learning parity (LPN) with noise, which is a noisy super-
vised learning task. Given dimension d and parameter η < 1, our goal is to learn a
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randomly picked S ⊂ [d] given a data set (x1, y1), ..., (xN , yN) as follows:

x ∼ {±1}d, y =

 xS, w.p. 1− η
− xS, otherwise.

We consider some upper bounds for this task:

• N = d samples suffice information-theoretically (brute force over S).

• When η = 0, this is just a linear system modulo 2, can solve in polynomial
time with Gaussian elimination.

• When η > 0, there is a 2O(d/ log d)-time algorithm that can beat brute force [BKW03].

We also have the following two properties from the lower bound side:

• LPN hypothesis: this task is hard to learn. Actually, there is no polynomial
time algorithm even to even to distinguish from random labels.

• k-sparse parity with noise: if |S| = k, any algorithm requires dΩ(k) time.

In particular, we have the following lower bound

Theorem 1 ([BFJ+94]). Any statistical query algorithm for learning parity with noise
requires O(2Ω(d) queries or tolerance 2−Ω(d).

proof strategy. We consider any query to Ex,y[y · ψ(x)] and:

• Argue that as a random variable in the unknown parity S, this quantity
concentrates around its expectation ESEx,y[y · ψ(x)].

• For most S, a valid SQ oracle would simply answer the query with ESEx,y[y ·
ψ(x)].

• This oracle provides very little information about S.

3.2 SQ dimension

Now, we provide General recipe for proving CSQ lower bounds for supervised
problems: statistical query dimension using the so called SQ dimensions. We
recall the correlational statistical query (CSQ) models. In this setting, the algorithm
only interacts with the dataset through queries of the form E[y · ψ(x)] + ζ, where
ψ : Rd → R and ζ is some noise with |ζ| ≤ τ for tolerance τ corresponding to

√
1/N .

We provide the definition for SQ dimension as follows:
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Definition 1 (SQ dimension). A class of functions has SQ dimension ≥ D w.r.t. input
distribution q if there exist functions f1, ..., fD in the class s.t. for all i 6= j:∣∣Ex∼q[fi(x)fj(x)]

∣∣ ≤ 1

D
.

As an example, we consider the PARITY = {f(x) = xS : S ⊂ [d]} has SQ
dimension 2d with respect to uniform distribution. This argument also lets us
generalize to sparse parity.

Now, we give the following theorem connecting the SQ dimension and CSQ
query lower bounds.

Theorem 2 ([BFJ+94, Szö09]). If F has SQ dimension D with respect to q, then any CSQ
algorithm for learning F from examples from q requires Ω(Dτ 2) queries or tolerance τ .

As an example, we take the tolerance to be τ = 3
√

1/D,. This indicates that If
D is super-polynomially large, the SQ lower bound qualitatively implies that you
either need a super-polynomial number of queries or a super-polynomial number
of samples (inverse tolerance).

proof on board. We consider F with SQ dimension ≥ D, i.e., we can find f1, ..., fD ∈
F such that ∣∣Ex[fi(x)fj(x)]

∣∣ ≤ 1

D
.

The brief idea for the proof is to argue that the number of problem instances i ∈ [D]

that get “ruled out“ at every state is very small because for most i, answering with
a “trivial” oracle response is accurate.

In particular, we define

〈f, g〉 := Ex∼q[f(x)g(x)].

Fixing CSQ query E[yψ(x)], we further define

A+ := {i ∈ [D] : 〈fi, ψ〉 ≥ τ},
A− := {i ∈ [D] : 〈fi, ψ〉 ≤ −τ}.

Our goal is to show that
∣∣A±∣∣ are small. We pick the potential function

Z = 〈ψ,
∑
i∈A+

fi〉2.
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We first provide the upper bound of Z by Cauchy-Schwartz inequality:

Z ≤‖ψ‖2

∥∥∥∥∥∥
∑

i∈A+fi

∥∥∥∥∥∥
2

≤
∑

i,j∈A+

〈fi, fj〉

=
∑
i∈A+

‖fi‖2 +
∑

i 6=j∈A+

〈fi, fj〉

≤
∑
i∈A+

‖fi‖2 +
1

D

∣∣A+
∣∣ (∣∣A+

∣∣− 1)

≤
∣∣A+

∣∣2
D

+
∣∣A+

∣∣ .
We also have the following lower bound onZ according to the fat that 〈ψ,

∑
i∈A+ fi〉 ≥

τ
∣∣A+

∣∣. By definition of A+, we have

Z ≥ τ 2
∣∣A+

∣∣2 .
Therefore, we have

τ 2
∣∣A+

∣∣2 ≤ Z ≤
∣∣A+

∣∣2
D

+
∣∣A+

∣∣ ,
which indicates that ∣∣A+

∣∣ ≤ D

Dτ 2 − 1
≤ O(1/τ 2).

Similarly, we have
∣∣A−∣∣ ≤ O(1/τ 2). This shows that all but O(1/τ 2) are consistent

with the answer 0. Therefore, Dτ−2 queries are enough to narrow down to the true
answer.

3.3 SQ Lower bounds for MLPs

For MLPs, we have the following lower bound for any CSQ algorithms.

Theorem 3 ([DKKZ20]). Any CSQ algorithm for learning one-hidden-layer size-k MLP’s
over Gaussians, even to constant error, requires 2dΘ(1) queries or tolerance d−Ω(k)

In this class, we prove a slightly weaker bound with a simpler proof due
to [GGJ+20]. In particular, they exhibit a family of dΩ(log k) networks that are all
exactly orthogonal to each other.
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Proof. We select S ⊆ [d] of size m = log k. Given w ∈ {±1}m, we defined w[S] ∈ Sd−1

by

w
[S]
i =

wi/
√
m, if i ∈ S;

0, otherwise.

We define

fS(x) =
∑

w∈{±1}m
(

m∏
i=1

wi)ReLU(〈w[S], x〉).

We have the following two claims:

Claim 1. fS is nonzero.

Claim 2. 〈fS, fT 〉 = 0 for any sign-symmetric q if S 6= T .

Proof. We define � as (x� z)i = xizi. We have

f(x� z) = zSfS(x)

=
∑
w

∏
i∈[m]

wiReLU(〈w[S], x� z〉)

=
∑
w

∏
i∈[m]

wiReLU(〈w[S] � z, x〉)

=
∑
w′

∏
i∈[m]

w′i · zSReLU(〈w′[S], x〉).

Thus, we have

〈fS, fT 〉q = Ex[fS(x)fT (x)]

= Ex,z[fS(x� z)fT (x� z)]

= Ex,z[fS(x)fT (x)zSzT ]

= Ex[fS(x)fT (x)] · Ez[zSzT ].

We can observe that the second term is 0, which makes 〈fS, fT 〉q = 0.

Using the above two claims, we can deduce that the SQ dimension for this
problem is at least

SQd,m ≥ dΩ(m) = dΩ(log k).
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3.4 SQ Lower bounds for real-value functions

The Full SQ lower bounds for supervised learning of real-valued functions are rare
or hard to show. This is because the quirk of the SQ model. However, we still have
the following observation:

Observation 1 ([VW19]). Suppose F is a finite collection of functions such that for every
f, g ∈ F , Prx∼q[f(x) = g(x)] = 0. Then there exists a statistical query that will rule out a
constant fraction of functions in F , even with tolerance 0.1.

proof strategy. The intuition is to find φ(x, f(x)) such that φ(x, f(x)) = vf for vf ∈
[0, 1]. This is well-defined because for every f, g ∈ F , Prx∼q[f(x) = g(x)] = 0. In this
way, an answer to φ(x, f(x)) rules out all g ∈ F such that

∣∣vg − vf ∣∣ > 0.1.

We remark that when functions are real-valued but take on Boolean values a
non-vanishing fraction of the time, then the proof above does not apply. Other
than this observation, [CGKM22] also provides a full SQ lower bounds for learning
(real-valued) MLPs over Gaussian inputs

4 SQ lower bounds for unsupervised problems

4.1 SQ lower bounds for unsupervised problems

Instead of families of functions w.r.t. some input distribution q, we now consider
families of distributions. Let D be a reference distribution (typically a simple
distribution like Unif({±1}d) or N (0, Id). We define pairwise correlation between
two distributions relative to D as

〈D1, D2〉D = Ex∼D

[(
D1(x)

D(x)
− 1

)(
D2(x)

D(x)
− 1

)]
.

Given set T of distributions, we define average correlation w.r.t. D by

ρD(T ) =
1

|T |2
∑

D1,D2∈T

〈D1, D2〉D.

In particular, we say the set of distributions T ∗ has statistical dimension ≥ ∆ with
respect to D with average correlation γ if for every T ⊆ T ∗ of size ≥ |T ∗| /∆, we
have ρD(T ) ≤ γ. We have the following theorem:

Theorem 4 ([FGR+17]). Suppose T ∗ is a finite collection of distributions with statistical
dimension ≥ ∆ with respect to D with average correlation γ. Then any statistical query
algorithm for learning distributions in T ∗ requires tolerance

√
γ or at least Ω(∆) queries
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proof intuition. Suppose that for > 1/∆ fraction of distributions in T ∗, some statis-
tical query has expectation much farther than its expectation w.r.t. D. Then the
average correlation among those distributions is too large. The remaining proof
closely tracks the SQ dimension proof for supervised learning.

4.2 How to lower bound statistical dimension

In this subsection, we focus on deriving a general recipe for SQ lower bounds. We
start from an SQ lower bound for mixtures of Gaussians. Our goal is to design a set
of Gaussian mixtures which mostly have tiny pairwise correlation with each other
relative to N (0, Id).

A core problem here is to get tiny pairwise correlation. The idea here is the
so-called “moment matching“. In particular, we consider some distribution A over
R that matches the first m order moments with N (0, Id). We then define Pv to be
the moment of unit vector v w.r.t. A. These Pv’s can be regarded as some “parallel
pancakes” that satisfy the two key properties:

• Moments of Pv are equal to moments of N (0, Id).

• For typical v′, the projection of Pv along v′ looks like N (0, Id).

Therefore, the method of moments and the dimensionality reduction (actually
one can prove that for all CSQ algorithms) fail. Formally, we have the following
theorem:

Theorem 5 ([DKS17]). Let A be a distribution over R whose first m moments match those
of N (0, 1), i.e.

Ex∼A[xi] = Ex∼N (0,1)[x
i]

for all 1 ≤ i ≤ m. Then for any unit vector u, v, we have

〈Pu, Pv〉N (0,Id) ≤
∣∣〈u, v〉∣∣m+1 〈A,A〉N (0,1).

From the mixture of Gaussian, we propose the general recipe for SQ lower
bounds:

• We construct one-dimensional moment-matching example using a distribu-
tion from the distribution family in question (e.g. Gaussian mixtures). This
step is usually highly problem-specific and where all the hard work goes.

• We hide it along some direction (Pv should still be a member of the distribution
family).
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• We argue that it is hard for any SQ algorithm to distinguish whether samples
come from some Pv or from N (0, Id).

In conclusion, we have the following theorem for learning mixture of Gaussians:

Theorem 6 ([DKS17]). Any SQ algorithm that learns general mixtures of Gaussians, i.e.
of the form

∑k
i=1 λiN (µi,Σi), requires dΩ(k) queries or d−Ω(k) tolerance.
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