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Lecture 16: Supervised learning IV: Mean Field Limit

1 Finishing up the NTK Analysis

1.1 Recalling the Setting

We are given a dataset (xi, yi) ∈ Rd × R and a student network fθ : Rd → R. We are
trying to learn parameters θ ∈ Rp, where θ is initialized to some θ0. We define the
loss of some function g to be L̂(g)

△
= 1

2
||g(X)− y||22 and L̂0

△
= L̂(γfθ0), where γ > 0 is

a scaling parameter.
We can define a gradient flow on the parameter space Θ through the equation

dθt = −∇θL̂(γfθt)dt = −γJT
t ∇L̂(γfθt)dt,

where the Jacobian matrix is given by

Jt = Jθt =


∇θfθt(x1)

...
∇θfθt(x1).

 ∈ Rn×p

The main idea is to compare the gradient flow to linearized dynamics, which is
given by the equations

f lin
θ (x) = fθ0(x) + J0(θ − θ0)

dθ̃t = −∇θL̂(γf
lin
θ̃t

) = −γJT
0 ∇L̂(γf lin

θ̃t
),

where we note here that the Jacobian does not change in time for the linearized
network. Two assumptions from last time were

1. Jθ is Lipschitz in θ with some constant β.

2. J0 = Jθ0 is full rank.

Before we complete the analysis, we recall the lemmas we proved last time.
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Lemma 1. Suppose that Q(t) ⪰ λ · Id for all t. Then for (gt) given by

dgt = −Q(t)∇L̂(gt)dt,

we have
L̂(gt) ≤ L̂(g0) · exp(−2λt).

In lecture, the way this was written was

L̂(θ̃t) ≤ exp
(
−Ω(σ2

min(Jθ)γ
2t)

)
L̂0

Proof. The proof idea was through a strong convexity style argument.

Lemma 2 (Lemma 2). If θ is close to θ0, then Jθ is close to Jθ0 .

Proof. The idea of the proof was the triangle inequality and the assumption that J
is Lipschitz, that is,

||Jθ − Jθ0||op ≤ β||θ − θ0||2
for some β > 0.

Today, we will do the final step, proving

Lemma 3. Suppose that (θ̂t) satisfies

dθ̂t = −S(t)T∇L̂(gθ̂t)

for some network G, and that λ · Id ⪯ S(t)S(t)T ⪯ λ̄ · Id. Then

||θ̂t − θ̂0||2 ≤
√
λ̄

λ
||gθ̂0(x)− y||.

The key feature here is that the numerator features a square root.

Proof.

θ̂t = θ̂0 −
∫ t

0

S(s)T∇L̂(gθ̂s)ds

⇒ ||θ̂t = θ̂0|| −
∫ t

0

||S(s)T∇L̂(gθ̂s)||ds

≤
∫ t

0

||S(s)||op︸ ︷︷ ︸
≤
√
λ̄

·|| ∇L̂(gθ̂s)︸ ︷︷ ︸
gθ̂s (x)−y

||ds

≤
√

λ̄ ·
∫ t

0

||gθ̂s(x)− y||︸ ︷︷ ︸
≤exp(−λs)·||gθ̂0−y|| (by previous lemma)

ds

≤
√

λ̄ · ||gθ̂0 − y|| ·
∫ t

0

exp(−λs)ds

≤
√

λ̄ · ||gθ̂0 − y|| · 1
λ
ds
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Applying this inequality to θ̂t = θ̃t, gθ = f lin
θ , S(t) = γJ0, we have that

||θ̃t − θ0|| ≤
√

σ2
max(J0)

σ2
min(J0)

· ||fθ0(x)− y||

≤
√

2γ2σ2
max(J0)

γ2σ2
min(J0)

·
√

L̂0

≲
σmax(J0)

γσ2
min

·
√

L̂0

Then, substituting our bounds on the eigenvalues of J0 suffices for the proof.

2 Mean-Field Limit

To recall, in the NTK regime, we have as the trainer network

fθ(x) = γ
N∑
i=1

aiσ(⟨wi, x⟩),

and the NTK regime is characterized as γ ≫ 1/N. As showed previously, the
Jacobian does not change much over this scaling, and so the network is well-
approximated by its Taylor expansion around the parameters at initialization. How-
ever, gradient descent in the NTK regime is bottlenecked by what kernel methods
can do. Then, the natural question is what happens in the regime γ ≍ 1

N
, which is

known as the mean field regime.
We first introduce notation, then explain the defining features of the mean field

limit. We first introduce the student network

fθ(x) =
1

N

N∑
i=1

aiσ
(
⟨wi, x⟩

)
It will be convenient to denote this by fθ(x) =

1
N

∑N
i=1 σ (x; θi) We will consider

population gradient descent:

θ(k+1) ← θ(k) − ηk∇L
(
θ(k)

)
where L(θ) = Ex,y

[(
y − fθ(x)

)2] is the test loss (can be approximated using online
gradient descent). This loss function L(θ) can be decomposed as

L(θ) = E
[
y2
]
+

2

N

N∑
i=1

V (θi) +
1

N2

N∑
i,j=1

U
(
θi, θj

)
,
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where
V (θi) ≜ −E

[
y · σ (x; θi)

]
is known as the external field and

U
(
θi, θj

)
≜ E

[
σ (x; θi) · σ

(
x; θj

)]
are “pairwise interactions” between particles/neurons. Some convenient notation
will be to set

∇θiL(θ) =
2

N
∇Ψθ (θi) for Ψθ (θi) ≜ V (θi) +

1

N

N∑
j=1

U
(
θi, θj

)
.

2.1 Physics Intuition for the Mean Field Limit

The physics intuition is to regard each θi is an interacting particle. The idea is that as
N →∞, the fluctuations in the “environment” around any given particle average
out, so every particle experiences same “average environment,” hence the name
mean field. In the mean field limit, at any point in time, all particles are i.i.d. draws
from same distribution. The natural question, hence, is how does this distribution
evolve over the course of training?

Let’s consider the loss

L(θ) = E
[
y2
]
+

2

N

N∑
i=1

V (θi) +
1

N2

N∑
i,j=1

U
(
θi, θj

)
We can think of the term 2

N

∑N
i=1 V (θi) as similar-valued to 2E

[
V (θi)

]
for θi drawn

from the “empirical distribution”ρ̂θ ≜ 1
N

∑
i δθi , and the second term 1

N2

∑N
i,j=1 U

(
θi, θj

)
can similarly be thought of as some U -Statistic.

Hence, the idea is that instead of parametrizing in terms of θ = (θ1, . . . , θN), we
can parametrize in terms of a probability distribution ρ over Rd. Then L becomes

L(ρ) ≜ E
[
y2
]
+ 2

∫
V (θ)dρ(θ) +

∫
U
(
θ, θ′

)
dρ(θ)dρ

(
θ′
)

To give some more intuition, the basic idea in statistical physics is that when the
number of particles in a system is very large, instead of considering the dynamics of
all of the individual particles, we can instead consider some probability distribution
induced by the particles. This assumption is justified in the N →∞ limit due to a
law of large numbers argument.
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Let’s do a comparison of what the dynamics look like in the finite N case and in
the mean-field limit. In the finite N case, the loss function, Ψ (parameterized by θ),
and the dynamics are given by

L(θ) = E
[
y2
]
+

2

N

N∑
i=1

V (θi) +
1

N2

N∑
i,j=1

U
(
θi, θj

)
Ψθ (θi) ≜ V (θi) +

1

N

N∑
j=1

U
(
θi, θj

)
dθti = −∇Ψθ

(
θti
)
dt, θ0i ∼ ρ0.

In the mean-field limit, these equations are given by

L(ρ) ≜ E
[
y2
]
+ 2

∫
V (θ)dρ(θ) +

∫
U
(
θ, θ′

)
dρ(θ)dρ

(
θ′
)

Ψρ(θ) ≜ V (θ) +

∫
U
(
θ, θ′

)
dρ

(
θ′
)

dθ̄ti = −∇Ψρt

(
θ̄ti
)
dt, ρt = law

(
θ̄ti
)

One difference here is that the parameters in question are not individual θ’s, but
rather probability distributions. Secondly, the function Ψ in the dynamics is now
parameterized by ρt. The idea here is that the dynamics of the mean-field are now
parameterized by the mean-field variables themselves. In particular, one can show
that the dynamics are given by a continuity PDE:

∂tρt = Div(ρt · ∇Ψρt),

which holds in the weak sense. In the above, −∇Ψρt is called the velocity field of
ρt, and the idea is that the process ρt is performing gradient descent in the space
of probability distributions (equipped with the Wasserstein metric) with respect
to the function L(ρ). There is a rich theory about this material; one good source is
[AGS06].

2.2 Derivation of the Continuity Equation

Recall again the continuity equation given above:

∂tρt = Div
(
ρt · ∇Ψρt

)
.

In this statement, we mean that the PDE holds in the weak sense, in that for
any “nice” (e.g. bounded, differentiable, with bounded gradient) test function
φ : Rd → R, we have
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∫
φ(θ)∂tρt(θ)dθ =

∫
φ(θ) · div

(
ρt · ∇Ψρt

)
(θ)dθ (⋆)

We formulate this as being satisfied in the weak sense because differentiable solu-
tions to (⋆) might not exist. We now show the derivation for this equation. Note
that for θ̄t ∽ ρt,

LHS of (⋆) =
∂

∂t
E
[
φ
(
θ̄t
)]

= E

[〈
∇φ

(
θ̄t
)
,
d

dt
θ̄t

〉]
(differentiate under integral)

=

∫ 〈
∇φ(θ),−∇Ψρt(θ)

〉
dρt(θ) (gradient flow for θ̄t)

= −
∫ 〈
∇φ(θ),∇Ψρt(θ)

〉
dρt(θ)

= RHS of (⋆) (integration by parts)

2.3 Non-asymptotic Convergence to the Mean-Field Limit

We use a method known as the “Propagation of chaos.” Some original references are
by Kac in 1956, McKean in 1969, and Sznitman in 1991; a comprehensive reference
is in [CD22]. We want to compare (θ

(k)
i )k=0,1,2... and

(
θ̄ti
)
t≥0

, where the first are the

gradient descent iterates given by θ
(k+1)
i ← θ

(k)
i − h∇L(θ(k)), and the second are the

mean-field iterates given by dθ̄ti = −∇Lρt(θ̄
t
i)dt, where ρt = law(θ̄ti). Note that

θ
(k)
i = θ

(0)
i + 2h

k−1∑
l=0

Fi

(
θ(l); (xl+1, yl+1)

)
θ̄ti = θ̄

(0)
i + 2

∫ t

0

G
(
θ̄si ; ρs

)
ds

for Fi

(
θ; (x, y)

)
≜

(
y − fθ(x)

)
· ∇θiσ (x; θi), G(θ; ρ) ≜ −∇Ψρ(θ). The ultimate goal is

to upper bound
∥∥∥Θ̄kh

i − θ
(k)
i

∥∥∥. To do so, will bound by a self-similar expression of
the form

(small terms) +
∫ kh

0

∥∥∥θ̄si − θ
(⌊s/h⌋)
i

∥∥∥ ds.
This will imply (by Grönwall’s inequality), the desired bound.
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Now, let [S] = h · ⌊s/h] and consider∥∥∥θ̄khi − θki

∥∥∥
= 2

∥∥∥∥∥∥
∫ kh

0

G
(
θ̄si ; ρs

)
ds− h

k−1∑
l=0

Fi

(
θ(l); (xl+1, yl+1)

)∥∥∥∥∥∥
≤ 2

∥∥∥∥∥
∫ kh

0

[
G
(
θ̄si ; ρs

)
−G

(
θ̄
[s]
i ; ρ[s]

)]
ds

∥∥∥∥∥ (1)

+ 2

∥∥∥∥∥
∫ kh

0

[
G
(
θ̄
[s]
i ; ρ[s]

)
−G

(
θ
(⌊s/h⌋)
i ; ρ[s]

)]
ds

∥∥∥∥∥ (2)

+ 2

∥∥∥∥∥∥h
k−1∑
l=0

[
G
(
θ
(l)
i ; ρlh

)
− Fi

(
θ(l); (xl+1, yl+1)

)]∥∥∥∥∥∥ (3)

We first bound term (1) (easy). This term is small because because G is Lipschitz by
assumption, and we can show f varies smoothly over time so that ρs and ρ[s] are
close. Term (2) is bounded by the Lipschitzness of G:∥∥∥∥G (

θ̄si ; ρ[s]
)
−G

(
θ
(⌊s/h⌋)
i ; ρ[s]

)∥∥∥∥ ≲
∥∥∥θ̄si − θ

(⌊s/h⌋)
i

∥∥∥ ,
so (2) is bounded by ∫ kh

0

∥∥∥θ̄si − θ
(⌊s/h⌋)
i

∥∥∥︸ ︷︷ ︸
looks analogous
to what we want

to bound on the LHS

ds

Now to bound (3), consider

k−1∑
l=0

[
G
(
θ
(l)
i ; ρlh

)
− Fi

(
θ(l); (xl+1, yl+1)

)]
.

The key idea is to note that Fi

(
θ(l); (xl+1, yl+1)

)
has expectation G

(
θ
(l)
i ; ρ̂l

)
, where

ρ̂l is the empirical distribution of 1
N

∑N
i=1 δθ(l)i

. Then, over many steps l, the total

deviation between the Fi

(
θ(l); (xl+1, yl+1)

)
and the G

(
θ
(l)
i ; ρ̂l

)
is of order h

√
kp by

Martingale concentration. Then, replacing Fi with its expectation, it remains to
bound
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k−1∑
l=0

[
G
(
θ
(l)
i ; ρlh

)
−G

(
θ
(l)
i ; ρ̂l

)]

=
1

N

k−1∑
l=0

N∑
j=1

[
Eθ̄U

(
θ
(l)
i , θ̄lhj

)
− U

(
θ
(l)
i , θ

(l)
j

)]
Again, by Martingale concentration we can essentially replace Eθ̄U(θ

(l)
i , θ̄lhj ) (deter-

ministic) with U(θ
(l)
i , θ̄lhj ) (random). Then, we use Lipschitzness of U to get

1

N

k−1∑
l=0

N∑
j=1

∥∥∥∥U (
θ
(l)
i , θ̄lhj

)
− U

(
θ
(l)
i , θ

(l)
j

)∥∥∥∥
≤ 1

N

k−1∑
l=0

N∑
j=1

∥∥∥θ̄lhj − θ
(l)
j

∥∥∥ .

Once again, this last term looks similar to what we want to bound. This yields the
self-similar equation we sought after.

2.4 Note on the PDE when the Data Distribution has Symmetries

When data distribution has symmetries, PDE simplifies considerably. Suppose
that the training data

{
(xi, yi)

}
satisfies xi ∼ N (0, I) and yi = φ (Πx) where Π is a

projection to a low-dimensional subspace V ∗.
Then the joint dist over (x, y) is invariant under rotations of x that preserve V ∗, ie.

Rv ∈ V ∗ ∀v ∈ V ∗. Consider this observation: Let R be such a rotation. If ρ0 and ρ′0
are two different initializations of the weights related by ρ′0 = R#ρ0 (i.e., to sample
(a′, w′) from ρ′0, one can sample (a, w) from ρ0 and then take a′ = a, w′ = Rw)), then
ρ′t = R#ρt.

Hence, if ρ0 is rotation-invariant, then ρt is invariant to rotations preserving V ∗

for any t ≥ 0! ρt is thus completely specified by the distribution ona, Πw︸︷︷︸
s⃗

,
∥∥Π1w

∥∥
2︸ ︷︷ ︸

r

 ,

i.e., we get a dim (V ∗) + 2 dimensional PDE! Then denoting the distribution, or
(a, s⃗, r) by ρ̄t, we have

∂tρ̄t = div
(
ρ̄t · ∇s⃗Ψρ̄t

)
+ ∂a

(
ρ̄t · ∂aΨρ̄t

)
+

1

r
∂r

(
r · ρ̄t · ∂rΨ̄ρ̄t

)
.
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3 Analysis of the Mean-Field Theory

Recall that the game plan for understanding training dynamics of overparameter-
ized neural networks was

1. Define the limiting object.

2. Show that we quickly converge to the limiting object as N →∞.

3. Prove optimization/generalization guarantees for limiting object.

3.1 Theorems Regarding Speed of Convergence

Works such as [MMN18] and [MMM19] address this second point. One theorem
that they proved is:

Theorem 1 (Mei-Montanari-Nguyen ’18). Assumptions: (1)∇V,∇U bounded Lipschitz,
(2) σ bounded, (3)∇θσ(x; θ) has sub-Gaussian tails.

Then let (θ(k))k=0,1,2,... denote iterates of gradient descent with step size h and let (θ̄t)t≥0

denote mean-field gradient flow. Then with probability 1 − δ in the randomness of the
initialization and the training examples,

max
i∈[N ]

sup
k=0,...,T/h

∥∥∥θ(k)i − θ̄khi

∥∥∥
2

≲ eO(T ) ·
√
max(1/N, h) · [

√
p+ log(N max(1, T/h)) +

√
log 1/δ]

3.2 Theorems Regarding Asymptotics

Regarding the third point above, it is in general quite difficult to prove things about
the PDE. The current understanding is largely limited to asymptotics, toy examples
(e.g., generalized linear models), and experiments. One example is from [CB18],
from which there is the following information theorem about the evolution of L(ρt)
in noiseless gradient descent.

Theorem 2. Suppose that σ is sigmoid or ReLU, and the distribution over x has finite
fourth-order moments. If the support of the random initialization is chosen appropriately
and the distribution over x satisfies certain a certain “Sard-type regularity” condition, then
if ρt → ρ∞, then ρ∞ is a global minimizer of L(ρ).

The proof of this theorem exploits facts from the Wasserstein gradient flow, as
well as homogeneity/partial homogeneity of the activation function. Follow-up
works include [NP23] and [EW21].

Another theorem regarding asymptotics is the evolution of L (ρt).
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Theorem 3 ([MMN18] (informal)). The theorem extends the mean-field picture to “noisy
gradient descent”, i.e. θ ← (1 − 2λη) · θ − 2η · ∇L(θ) + N(0, η/β). As t → ∞, the
resulting continuity PDE converges to minimizer of the regularized loss (free energy)

Fβ,λ(ρ)
def
= L(ρ)/2 + (λ/2) · Eρ

[
∥θ∥2

]
− β−1 Ent(ρ)

In fact, limit distribution satisfies

ρ∞(θ) ∝ exp
(
−βΨ(λ)

ρ∞(θ)
)

3.3 Toy Models

One setting in which the continuity PDE greatly simplifies is when the underlying
data distribution has symmetries. For instance, suppose that the x’s are Gaussian
and that y = ϕ(⟨w∗, x⟩) (the single index model), so that the function secretly only
depends on a 1D subspace. Recall this is a setting that kernel methods perform
terribly at because they fail to efficiently learn the relevant feature ⟨w∗, ·⟩. Then,
because data distribution is invariant to any rotation that preserves w∗, the PDE
simplifies dramatically! In such settings where symmetries drastically reduce the
dimension of the PDE, we can numerically solve it and obtain sharp predictions.
The following is an example from [ABAM22].
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Another example is from [MMN18]. In this paper, the context is classifying isotropic
Gaussians. The data is a mixture ofx ∼ N

(
0, (1 + ∆)2 · Idd

)
y = 1

x ∼ N
(
0, (1−∆)2 · Idd

)
y = −1

In this case, the reduced PDE is 1-dimensional (only need to track distribution of
∥θ∥2), and they obtain rigorous end-to-end guarantees for this problem.

Another example is [BMZ23]. In this paper, the continuity PDE is for learning
f(x) = ϕ(⟨w∗, x⟩) for ϕ(z) = He0(z) −He1(z) + 2

3
He2(z) using a one-hidden-layer

ReLU network over Gaussian examples. They demonstrate two empirically ob-
served phenomena: (1) plateaus in the loss curve, interspersed with sharp drops
and (2) longer and longer time scales. A key (partially rigorous) finding is that the
mean field gradient flow incrementally learns low-degree Hermite components of
single index models.
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3.4 CSQ Revisited

It’s helpful to keep in mind what is generally possible (by any algorithm). Consider
single index models

(
y = ϕ

(
⟨w∗, x⟩

))
, where the complexity of CSQ algorithms is

dictated by the “information exponent,” which is the smallest s for which the s-th
Hermite coefficient of ϕ is nonzero.

As examples, [AGJ21] shows that online SGD on single neuron learns in time
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dS. [ABAM23] generalizes (“leap complexity”) to multi-index models ( y = ϕ (ΠWx)

), layerwise training of overparametrized model learns in time dleap . These are
optimal for CSQ algorithms (next unit: lower bound), but there are more efficient
non-CSQ algorithms (filtered PCA) that achieve O(d) sample complexity and (fixed)
polynomial runtime [CM20].
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