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Supervised learning II: noise sensitivity, one-hidden
layer MLPs, Hermite analysis, CSQ algorithms

1 Noise Sensitivity and Fourier Concentration

1.1 Recap: Low-Degree Approximation Implies Learnability

Last time, we discussed that Boolean functions f : {±1}n → {±1} admits a nice
decomposition, called the Fourier expansion:

f(x) =
∑
S⊆[n]

f̂ [S] · xS

Note that xS =
∏

i∈S xi. This is a multilinear polynomial - that is, no variable
xi appears squared, cubed, etc. We call f̂ [S] the Fourier coefficient and xS the
Parity/Fourier character/basis function.

Suppose that f is well-approximated by its low-degree truncation:

f≤t(x) =
∑
S:|S|≤t

f̂ [S] · xS.

That is, the error we get by approximating using the low-degree truncation is small,
such that

∑
S:|S|>t f̂ [S]2 ≤ ε. Then: given (x1, y1), . . . , (xn, yn) for xi ∼ {±1}, solving

the “L1 polynomial regression”,

min
p:deg(p)≤t

1

n

n∑
i=1

|yi − p(xi)|,

results in an estimator p that achieves test loss OPT +O(ε). Thus, Fourier Concen-
tration is all you need for agnostically learning Boolean Functions.

1.2 Noise-Stability Implies a Low-Degree Approximation

Noise sensitivity can help us show that a given concept class is well-approximated
by a low-degree polynomial (and thus, that functions in that class are agnostically
learnable).
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Definition 1. Given 0 < η < 1
2
, the noise sensitivity NSη(f) is given by

NSη(f) := P (f(x) 6= f(x′)),

where x ∼ {±1}n and x′ is given by flipping each bit of x independently with probability η.

Intuitively, high-degree functions (e.g. f = Parity) are very noise sensitive,
since flipping even one bit changes the output dramatically. On the flip side, if a
function is not noise-sensitive, then it should be well-approximated by a low-degree
polynomial. Formally, we can say the following:

Theorem 1. [KOS04] SupposeNSη(f) ≤ m(η). Let t � 1/m−1
(
Θ(ε)

)
. Then

∑
S:|S|>t f̂ [S]2 ≤

ε.

Proof. First, we will prove the following equation:

NSη(f) =
1

2
− 1

2

∑
S⊆[n]

(1− 2)|S|f̂ [S]2 (1)

The following is the proof for equation 1.
We use the Fourier transformation.

1− 2NSη(f) = (1−NSη(f))− (NSη)

= P (f(x) = f(x′))− P (f(x) 6= f(x′))

= E[f(x)f(x′)]

=
∑

S,T⊆[n]

f̂ [S]f̂ [T ]E[xSx
′
T ]

Simplifying for E[xSx
′
T ], we get:

E[xSx
′
T ] = E


 ∏
i∈S\T

xi

 ∏
i∈S∩T

xix
′
i

 ∏
i∈T\S

x′i




=
∏
i∈S\T

E[xi]
∏
i∈S∩T

E[xix
′
i]
∏
i∈T\S

E[x′i]

=

0 if S 6= T

(1− 2η)|S| if S = T

Thus, we’re left with:

1− 2NSη =
∑
S⊆[n]

(1− 2η)|S|f̂ [S]2

=⇒ NSη(f) =
1

2
− 1

2

∑
S⊆[n]

(1− 2η)|S|f̂ [S]2
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Second, to complete our proof, we will show that:∑
S⊆[n]:|S|≥1/η

f̂ [S]2 . NSη(f). (2)

To show equation 2, we will use the fact that (1 − x)a ≤ e−ax, which implies
that, if |S| ≥ 1/η, then (1 − 2η)|S| ≤ e−2η|S| ≤ e−1/2. We will also use the fact that
1 = E[f 2] =

∑
S⊆[n] f̂ [S]2. Now, we can say:

2NSη(f) = 1−
∑
S⊆[n]

(1− 2η)|S|f̂ [S]2

=
∑
S⊆[n]

f̂ [S]2
(

1− (1− 2η)|S|
)

≥
∑
|S|≥1/η

f̂ [S]2
(

1− (1− 2η)|S|
)

≥
(

1− e1/2
) ∑
|S|≥1/η

f̂ [S]2

Finally, notice that t = 1/η implies that O(ε) = m(η) ≥ NSη(f). This completes our
proof.

Furthermore, we can say the following about functions of k halfspaces with low
noise sensitivity. Recall that a halfspace is a function of the form g(x) = sgn(〈w,x〉).

Theorem 2. [KOS04] Any function f of k halfspaces satisfies NSη(f) . k
√
η. Further-

more, f can be approximately learned in time nO(k2/ε2).

Proof. The proof is involved, so we will not give the full proof. Instead, we will
prove a baby version to give intuition. Suppose w = [1, . . . , 1]T . Then f(x) =

sgn(〈w,x〉) is simply the majority function: if and only if the majority of the entries
in x are +1, f(x) will output +1.

Suppose we reveal x bit-by-bit, and we keep track of the sum of all bits. This is
a random walk that is approximately Gaussian. The magnitude of our final point
should be about

√
n.

Now, x′ flips each bit of x with probability η. We flip approximately ηn bits.
Equivalently, we extend the random walk about ηn steps. We want to know the
probability that the displacement in the opposite-to-original direction is more than√
n. To upper bound this probability, we will note that E[displacement] =

√
ηn and

we will use the Markov inequality to say the following:

Pr[displacement ≥
√
n] ≤ √η (3)
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bit # of x

Sum of bits

≈
√
n = 〈w, x〉

Reveal x bit-by-bit

Now, suppose we have a function f of k halfspaces, i.e.:

f(x) = h(sgn(〈w1,x〉), . . . , sgn(〈wk,x〉).

Then we want to prove that NSη(f) . k
√
n. Indeed:

NSη(f) = Pr[f(x) 6= f(x′)]

≤ Pr[∃i ∈ [k] : sgn(〈wi,x)〉 6= sgn(〈wi,x
′〉)]

≤
k∑
i=1

Pr[sgn(〈wi, x)〉 6= sgn(〈wi,x
′〉)] (Union-Bound)

. k
√
η

Let η = ε2

k2 . Then k
√
η = ε. The degree of our low-degree approximation of f is

1/η = O(k2/ε2). And any degree-t approximation of f can be learned in time nt,
completing our proof.

2 One-hidden-layer MLPs

x1 x2 x3 · · · xd

v1 v2 v3 · · · vk

linear

σ σ σ σ

We turn to a more realistic scenario for Probably Approximately Correct (PAC)
learning: functions that have continuously-valued input and output. A function is
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a mapping f : Rd → R. Our activation function σ can be more complex than the
sign, such as ReLU or tanh. We can think of this one-hidden-layer multilayered
perceptron as the “model organism” for neural networks: though it is simple, it
can serve as a rich testbed for algorithms such as nonconvex optimization, tensor
methods, kernel methods, and representation learning.

Succintly, we can write a one-hidden-layer MLP as:

f(x) =
k∑
i=1

λiσ(〈vi,x〉), for ‖vi‖ = 1 (4)

This is the simplest nontrivial neural network, but it is expressive. We will state
but not prove the following theorem:

Theorem 3. [Kol56] [Arn57] If the 〈vi,x〉’s are replaced with
∑

j φij(xj)’s, then f(x) can
realize any continuous function over a compact support.

Now, we will begin learning the toolbox for analyzing PAC-learning on continuously-
valued inputs.

3 Hermite Polynomial, Low-Degree Approximation

The canonical distribution of inputs in this setting - the analogue of the uniform
distribution over the hypercube - is the Gaussian. That is, we let DX ∼ N (0, Idd).

There is an analogous toolbox for this setting: in place of the Fourier characters
{x → xS}, we have the Hermite polynomials {hα}, which form an orthonormal
basis (of all square-integrable functions) with respect to the Gaussian measure, i.e.:∫ ∞

−∞
hα(x)hβ(x)

1√
2π
e−

x2

2 =

1 if α = β

0 if α 6= β

Or, equivalently:
Ex∼N (0,Idd)[hα(x)hβ(x)] = 1[α = β]

The first three Hermite polynomials in one dimension are h1(x) = x, h2(x) =
1√
2
(x2 − 1), h3(x) = 1√

6
(x3 − 3x). The exact functional form is not important for

us, but interested readers can see Wikipedia for "probabilist’s Hermite Polyno-
mials." In higher dimensions, the Hermite polynomials are simply products of
one-dimensional Hermite polynomials: for tuple α = (α1, . . . , αd),

hα(x) =
d∏
i=1

hαi
(xi).
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Instead of a Fourier expansion, we have a Hermite expansion. We can express
any square-integrable function as:

f(x) =
∑
α

f̂α · hα(x),

where f̂α is the Hermite coefficient. As before, we can empirically estimate E[f ·
hβ(x)] using the training data and then extract the coefficients using orthonormality:

E[f · hβ(x)] =
∑
α

f̂α · E[hα(x)hβ(x)] = f̂β.

Furthermore, we have the Gaussian analogue of Plancherel’s:

Ex∼N (0,1)

[
f(x)2

]
=
∑
α

f̂ 2
α := ‖f‖2

2

Note that the L2 norm of a function f is defined as ‖f‖2 =
√∫
|f(x)|2dx.

There exists analogous notions of low-degree approximations in this Gaussian
setting. If you plot the square of the Hermite coefficients as a function of the degree
l, you get a nice polynomial decay that’s about 1/l5/4. As the degree gets larger,
the Hermite coefficients get smaller. This gives an intuition for the following two
theories that we will not prove. In the one-dimensional case:

Theorem 4 (folklore). There exists a degree-O(1/ε4/3) polynomial p : R→ R such that:

‖p(·)− ReLU(·)‖2 ≤ ε

In the d-dimensional case:

Theorem 5 (folklore). There exists a degree-O(1/ε4/3) polynomial p : R→ R such that
∀v ∈ Sd−1:

‖p(〈v, ·〉)− ReLU(〈v, ·〉)‖2 ≤ ε

This implies there exists a dO(1/ε4/3)-time algorithm (polynomial regression) for
agnostically learning x→ ReLU(〈v,x〉) over Gaussian inputs.

More generally, for one-hidden-layer MLPs f(x) =
∑k

i=1 λiReLU(〈vi,x〉), the
degree-t = Θ(1/ε4/3) Hermite truncation f≤t =

∑
i λipi satisfies:

‖f − f≤t‖2 ≤
∑
i

|λi| · ‖pi − ReLU(〈vi, ·〉)‖2 ≤ ε‖λ‖1.

So far, we’ve found that we can agnostically learn ReLUs in time dpoly(1/ε) and
one-hidden-layer MLPs in time dpoly(‖λ‖1/ε).

Now, we ask ourselves, for one-hidden-layer MLPs:
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1. Can we remove the ε dependence?

2. Can we remove the ‖λ‖1 dependence?

3. Can we handle more layers?

4 Tensor Methods

In the setting where the one-hidden-layer MLPs are non-degenerate - that is, the vi’s
are robustly linearly independent - we can turn this supervised learning problem
into a tensor decomposition problem.

As our starting point, we will organize the Hermite polynomials into a tensor,
sometimes called the (higher-order) score function (of a Gaussian):

Sl(x) ∈
(
Rd
)⊗l

, (Sl)i1,...,il =
∏
i

√
αi!hαi

(x)

where α = (α1, . . . , αd) is a tuple where αi is the number of occurrences of i
among the {i1, . . . , il}. The first three score functions are: s1(x) = x, S2(x) =

xxT − Idd, S3(x) = x⊗3 − x⊗3 Idd. We can think of each Sj as the tensor equivalent
of the Hermite polynomial hj . More succinctly, we could write:

Sl(x) =
(−1)l

γ(x)
· ∇lγ(x),

where γ is the d-dimensional Gaussian PDF, and∇lγ(x) is its l-th derivative. The
upshot of this is that we want to approximate f , and the correlation of f and the
score function Sl gives us a tensor that will be low-rank (and so we can through
Jennrich’s algorithms or sum-of-squares at it).

Theorem 6. Stein’s identity: If f is sufficiently “regular,” then:

E[f(x) · Sl(x)] = E[∇lf(x)].

Proof. We will prove a baby version of Stein’s identity using Gaussian integration
by parts. In particular, we will prove the statement that for x ∼ N (0, 1):

E[f(x) · x] = E[f ′(x)] (5)

E[f(x) · (x2 − 1)] = E[f ′′(x)] (6)

7



Let γ denote the Gaussian density. Note that xγ(x) = −γ′(x), and that γ′′(x) =

(−xγ(x))′ = (x2 − 1)γ(x). Then:

E[f(x)x] =

∫ ∞
−∞

f(x)xδ(x)dx

=

 ∞∑
−∞

f ′(x)γ(x)dx

+

(
f(x)δ(x)

∣∣∣∞
∞

)
= E[f ′(x)] + 0

= E[f ′(x)]

E[f(x)(x2 − 1)] =

∫ ∞
−∞

f(x)(x2 − 1)γ(x)dx

=

(∫ ∞
−∞

f ′(x)(xγ)dx

)
+

(
f(x)xγ(x)

∣∣∣∞
−∞

)
=

∫ ∞
−∞

f ′′(x)γ(x)dx +

(
f ′(x)γ(x)

∣∣∣∞
−∞

)
+

(
f(x)xγ(x)

∣∣∣∞
−∞

)
= E[f ′′(x)] + 0 + 0

= E[f ′′(x)]

Happily, Stein’s identity gives us a one-line proof of problem 1a of pset 1! Recall
the setup, that we want to construct a tensor which we an run Jennrich’s on to get
the vi’s that make up f . That is,

f(x) =
k∑
i=1

λi〈vi,x〉3.

Applying Stein’s identity, we have:

E[f(x) · S3(x)] = E[∇3f(x)] = 6
k∑
i=1

λiv
⊗3
i ,

which we can use Jennrich’s on. Note that the last equality is because:

(∇3〈v,x〉3)abc =
∂3

∂xa∂xb∂xc
〈v,x〉3 = 6vavbvc.

More generally, for any smooth activation σ, consider the following function f that
we want to learn:

f(x) =
k∑
i=1

λiσ(〈vi,x〉).
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Applying Stein’s identity, we have:

E[f(x) · Sl(x)] = E[∇lf(x)] = E
[
σ(l)(x)

] k∑
i=1

λiv
⊗l
i ,

where σ(l) is the l-th derivative of the activation. Importantly, we get a low-rank
tensor multiplied by some constant factor. Even if σ is not smooth, as long is it is
square-integrable, we can show that:

E[f(x) · Sl(x)] =
√
l!σ̂l

k∑
i=1

λiv
⊗l
i ,

where σ̂l is the l-th Hermite coefficient of your activation function σ. Thus, as
proven in [JSA15], learning one-hidden-layer MLPs reduces to tensor decomposi-
tion. When vi’s are robustly linearly independent, there is an algorithm that runs
in poly(d, k, 1/ε) time and is proper. It’s proper in that, rather than outputting a
low-degree polynomial, we’re outputting the parameters of a network.

However, if we make no assumptions about the weights v1, . . . ,vk, we have
an issue. We can no longer hope to recover the parameters: for instance, we run
into a problem with the two networks

[
ReLU(〈v,x〉)− ReLU(〈v + ε ·w,x))

]
vs.

the network that is the constant 0. Nonetheless, we still have the following two
theorems:

Theorem 7. [CN23] For learning arbitrary one-hidden-layer MLPs over Gaussians, we
have a proper algorithm that runs in time poly(dk

2
, 1/ε).

Theorem 8. [DK23] For learning arbitrary one-hidden-layer MLPs over Gaussians, we
have an improper algorithm that runs in time poly(dk, 1/ε).

Intuitively, both algorithms are bottlenecked at dkc because they work with∑
i λiv

⊗l
i for l = 2, . . . , kc.

5 Lower bounds

The question is: can we get away with just using lower-degree tensors than kc? The
answer, we will see, is no. Indeed, there is a simple, two-dimensional example for
which the corresponding tensor is 0 unless we go up to a high degree.

Theorem 9. [DKKZ20] There exists a choice of {σi,vi}ki=1 such that for all 1 ≤ l ≤ k/2,
we have: ∑

i

λiv
⊗l
i = 0
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Specifically, take λi − (−1)i and vi =
(

cos
(

2πi
k

)
, sin

(
2πi
k

))
.

The above theorem suggests that any tensor-based algorithm must incur dΩ(k)

runtime.
What about for non-tensor algorithms, like kernel methods or gradient decent?

These approaches all have one major thing in common: they only use the correla-
tions between label y and functions of x.

1. Tensor methods: E[ySl(x)]︸ ︷︷ ︸
correlation of x & y

.

2. Kernel methods: minx E
[(
y −

∑
j cjφj(x)

)2
]

for a basis of features {φj(x)}.

This is equivalent to minx E
[(∑

j cjφj(x)
)2
]
− 2E

y ·∑
j

cjφj(x)


︸ ︷︷ ︸

correlation of x & y

+E[y2].

3. Gradient descent: ∇θ

{
E
[
(y − fθ(x))2

]}
= 2E[fθ(x)·∇fθ(]boldx)]−2E[y · ∇fθ(x)]︸ ︷︷ ︸

correlation of x & y

.

These are all “correlational statistical query” algorithms. In the Correlational Statis-
tical Query (CSQ) model, we’re not allowed to view individual data points. Instead,
we only get a population-level statistic. In particular, we feed a function ψ : Rd → R
to an Oracle, and the Oracle produces outputs a noisy estimate for the correlation be-
tween y and psi(x), i.e. E[y ·ψ(x)] + noise. We say the noise is bounded: |noise| ≤ τ ,
where the tolerance τ roughly corresponds to

√
1/# samples. Unfortunately, we

have strong evidnece that any method that falls under the CSQ model cannot beat
dk:

Theorem 10. In CSQ, learning one-hidden-layer MLP’s over Gaussians, even to constant
error, requries 2d

Θ(1) queries or tolerance d−Ω(k).

We will see the proof in the computational complexity unit next week.
In summary, recall our guiding questions. For one-hidden-layer MLP’s, we

could learn a low-degree approximation in time dpoly(‖λ1‖/ε). We asked:

1. Can we impprove the ε dependance? Yes!

2. Can we improve the ‖λ‖1 dependenace? Not with CSQ, though we’ll see how
to improve on this by going beyond correlational statistical query models.

3. Can we handle more layers? We’ll answer this when we go beyond CSQ.
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