
CS 224 Fall 2023 Scribes: Neil Shah
October 18, 2023

Lecture 12: PAC Learning Basics, Fourier Analysis

Today, we continued from the previous class on classification under Massart noise
(specifically, the notion of the two-player game) and proved a key lemma mentioned
in the last class. Then, we continued by starting the course’s Supervised Learning
unit.

1 Finishing Lecture 11

1.1 Notational Reference

Recall the notation presented in the previous lecture. For reference, the definition of
LeakyRELU is presented below:

LeakyReLUλ(z) =

(1− λ)z z ≥ 0

λz z < 0

as well as the following notation:

Lγ(w) = Ex,y[`(w;x, y) | |〈w, x〉| ≤ γ],

`(w;x, y) = LeakyReLUγ(−y · 〈w, x〉),

err(w;x, y) = 1[y 6= sgn(〈w, x〉)],
`(w;x) = Ey|x[`(w;x, y) | x],

err(w;x) = Ey|x[err(w;x, y) | x],

`(w) = Ex,y[`(w;x, y)],

err(w) = Ex,y[err(w;x, y)].

Additionally, λ = η + ε.

1.2 A Brief Recap

Recall the framing of the Filtertron algorithm as a game between two players: Alice
and Bob. We sought to find some “good” halfspace w satisfying

w = min
‖w‖=1

max
γ∈R

Lγ(w).

1

We can imagine this as some two-player game where Alice is playing some guess
for the halfspace and Bob is picking some slab γ such that the loss incurred by Alice
over the slab of points selected by Bob is large.

We claimed that if we could show the two lemmas that follow (also in the Lec-
ture 11 scribe notes), we would be done when it comes to showing this.

Lemma 1 (The true halfspace achieves small loss). Suppose that γ ≥ η + ε and the
margin for w∗ is τ . Then, Lγ(w∗) = −τε.

We proved this at during Lecture 11. Today, we show the latter of the two lemmas.

1.3 Proving Lemma 2

Lemma 2 (Suboptimal moves are punishable). If Alice playsw such that err(w) ≥ η+ε,
there exists some slab {x : |〈w, x〉| ≤ γ| for Bob such that Lγ(w) ≥ 0.

Proof. For the sake of contradiction, assume that no such slab exists (i.e. Lγ(w) < 0

for all γ). Additionally, observe that

Lγ(w) = Ex,y[`(w;x, y)1[|〈w, x〉| ≤ γ]]

= Ex
[(

err(w;x)− λ
)
· |〈w, x〉| · 1[|〈w, x〉| < γ]

]
Now, we can use the following representation of |〈w, x〉| as an integral:

|〈w, x〉| =
∫ ∞
0

1[s < |〈w, x〉|] ds.

The intuition behind why the above equality holds follows from noting that the area
under the curve forms a rectangle with area |〈w, x〉|. Applying this to the above,

Lγ(w) =

∫ ∞
0

Ex
[
(err(w;x)− λ) · 1[s < |〈w, x〉| ≤ γ]

]
ds.

Now, by an averaging argument, as 0 > Lγ(w) (the integral is negative), there exists
some s such that the integrand is negative.

This quantity is nonzero (< 0 =⇒ 6= 0), so s(γ) < γ (because the indicator 6= 0). An
analogous argument for Ls(γ) implies s(2)(γ) < s(1)(γ) < γ and so on. If we partition
[0, 1] over these points, we split [0, 1] into intervals over which the integrand is
negative. Adding these sub-intervals together yields

Ex[err(w;x)− λ] < 0 =⇒ err(w) < λ = η + ε.

2

However, we assumed that err(w) ≥ η+ ε, so we have a contradiction. Thus, such a
slab must exist, as desired.

A key takeaway from this proof is the trick that for some variable z, we can use

z =

∫ ∞
0

1[s < z] ds

to replace a variable with an integral of an indicator function and use this to get rid
of this variable.

1.4 Recap of Robustness

This unit revealed ways that robust estimation tasks can be reduced to a min-max
optimization over an “estimate” and a “discriminator”:

• With robust mean estimation, we reduced it to

min
w

max
u

u>Σwu.

• With list-decodable mean estimation, we reduced it to

min
w

max
u⊥{u1,...,uk}

u>Σwu.

• With halfspaces with Massart noise, we reduced it to

min
w

max
γ

Lγ(w).

Unlike algorithms in past lectures (i.e. the sum of squares unit), these algorithms are
practical, are based on simple iterative updates, and make minimal distributional
assumptions.

Sometimes, we have to be careful with the choice of model (especially when making
minimal distributional assumptions):

• Regression: Does adversary control random or arbitrary function? Is it only
the labels that get corrupted?

• List-decodable learning: Learn the true parameter or just a list of candidates?

• Today: Are label corruptions stochastic, adversarial, or somewhere in be-
tween?

3

And lastly, we can think about these algorithms from an “upstream” and “down-
stream” perspective:

• Upstream: Stress-test existing models to prevent “assumption overfitting.”

• Downstream: Robustness (and lack thereof) can have unintended conse-
quences even in settings without a real adversary (i.e. fairness).

These algorithms all suggest “general frameworks” that could be used even beyond
the realms in which they are developed. [DKKLMS17]

2 Introduction to Supervised Learning

So far, we have focused on distribution learning, which is when you obtain sam-
ples from an unknown distribution and wish to learn about it.

Now, we’ll focus on supervised learning, which is when samples are of the form
(x, y) and we wish to estimate y | x. These are the questions we’ll focus on:

1. What are the most powerful algorithms for such problems, and how do we
analyze them? (technical tools)

2. Under what distributional assumptions can we prove they work? (modeling)

In practice, the algorithm of choice is the standard deep learning pipeline: you run
SGD to optimize a deep neural network to fit training examples. Outside of some
specialized settings, it is unclear why exactly this works.

For the most part, we only know how to analyze these approaches when we know
there exists some other algorithm that could solve the problem in polynomial time.
So, we might wish to study these other algorithms before analyzing deep learning
algorithms.

3 PAC Learning

3.1 Introduction

PAC Learning, or “Probably Approximately Correct Learning,” is a tool proposed
by Leslie Valiant in 1984 [Val84] that has the following components:

• Input domain ΩX : For example, could be {±1}d or Rd.

4

• Label domain ΩX : For example, this could be {±1} (binary classification) or
R (regression).

• Concept class C: This is some class of functions ΩX → ΩY that we want to
work. For example, this could be Boolean formula or neural networks.

• Loss function ` : ΩX × ΩY → R≥0: These functions tell us how good a
particular prediction is relative to the ground truth.

• Data distribution DXY : A joint distribution over ΩX × ΩY .

For most of this unit, we will focus on realizable cases where to sample (x, y) ∼ DXY ,
you do

1. x ∼ DX , where DX is the input distribution (a probability distribution over
ΩX .

2. y = f(x) where f is unknown in C.

Now that we’ve made these definitions, we can define PAC learning:

• Given:

– Examples (x1, y1), . . . , (xn, yn) ∼ DXY , called the training data.

– Failure probability δ (this is why we say “probably”).

– Error parameter ε (this is why we say “approximately correct”).

• Goal: Output the function f̃ : ΩX → ΩY such that with probability ≥ 1 − δ
over the randomness of (x1, y1), . . . , (xn, yn),

E(x,y)∼DXY

[
`(f̃(x), y)

]
︸ ︷︷ ︸

test loss

≤ min
f∈C

E(x,y)∼DXY
[`(f(x), y)]︸ ︷︷ ︸

OPT

+ε.

(In the realizable setting, we have OPT = 0.)

If we have f̃ ∈ C, we call this proper (or agnostic) learning.

3.2 Empirical Risk Minimization

Consider the naive algorithm where f̃ is the function in C that best fits the training
data (and thus, minimizes “empirical risk”). This is

f̃ = arg min
f∈C

1

n

∑
i

`(f(xi), yi).

5

There are classical generalization bounds that control the number of samples needed
before the test loss achieved by this empirical risk minimizer to be bounded by
some ε. These bounds typically depend on a notion of the “complexity of C.”

The issue is that even for simple concept classes and datasets, empirical risk mini-
mization can be computationally intractable.

4 Boolean Functions and Fourier Analysis

4.1 Introduction

A “textbook” setup is learning Boolean functions over the uniform distribution.
Imagine there is a class of functions C {±1}n → {±1}. This could represent scenarios
like

• Decision trees.

• Constant-depth Boolean circuits (highly stylized version of a neural network).

• Parities (the “building blocks” for Boolean functions).

In this case, loss is the 0-1 error. Thus, we want to minimize

Px∼{±1}n [f̃(x) 6= f(x)].

4.2 Fourier Analysis of Boolean Functions

Observe that any Boolean function f : {±1}n → {±1} can be written as a multilinear
polynomial

f(x) =
∑
S⊆[n]

f̃ [S] · xS

where f̃ [S] is called the Fourier coefficient and xs is called the parity.

The parity functions x → xs are orthonormal with respect to the uniform over
{±1}n:

E[xsxT] = E[xS\T · xT\S] = E[xS\T] · E[xT\S] = 1[S = T].

Now, consider the following Plancherel formula: the L2 norm of f equals the L2

norm of f̃ . Equivalently,

Ex∼{±1}n [f(x)2] =
∑
S⊆[n]

f̃ [S]2.

6

We denote the right hand side of the above as ‖f‖22. Additionally, we have the
corollary that if g(x) = ΣS g̃[S] · xS ,

P[sgn(g(x)) 6= f(x)] ≤ ‖f − g‖22 =
∑
S⊆[n]

(f̃ [S]− g̃[S])2.

This is equivalent to saying that to learn f , it suffices to estimate its Fourier coeffi-
cients to small L2 error.

As the basis is orthonormal, we can extract the coefficients as follows:

E[f(x) · xT] = E

∑
S⊆[n]

f̃ [S] · xS · xT

 =
∑
S⊆[n]

f̃ [S]E[xSxT] = f̃ [T].

The leftmost term in the equality can be estimated empirically using training data.
We can estimate f̃ [T] for any T to error α using O(1/α2) samples (the bound follows
from a Chernoff bound).

However, the issue with the above is that there are exponentially many T ’s to
do this computation for.

4.3 Low-Degree Algorithm

Per a 1993 paper of Linial-Mansour-Nisan [LMN93], for a lot of interesting concept
classes, we can approximate the Fourier coefficient using low-degree polynomials.
Define the low-degree trunction

f≤t =
∑
S:|S|≤t

f̃ [S] · xS.

Then, if ‖f−f≤t‖22 ≤ ε
2
, then to learn f , it suffices to estimate f̃ [S] for all nO(t) subsets

S of size at most t, each to error
(

ε/2

nO(t)

)1/2
.

From the Chernoff and Union Bound computations, it follows that the runtime of
the above is nO(t)

ε
· log

(
nO(t)

δ

)
.

4.4 A Remark on Agnostic Learning

The low-degree algorithm we just discussed also provides guarantees in the agnostic
setting. It finds (an approximation to) the best low-degree approximation to the

7

label, i.e.
min

g:deg(g)≤t
E[(g(x)− y)2].

The optimal g can be found with polynomial regression. Observe that the above is
at most the following:

min
g:deg(g)≤t

E[(g(x)− y)2] ≤ E[(f≤t(x)− y)2]

where we think of f as some optimal classifier that we’re trying to compete against
(and achieves test error OPT) and f≤t is the low-degree of the optimal f . As we are
minimizing over polynomials g and f≤t ≤ g is one such polynomial, this inequality
holds.

Now, consider

min
g:deg(g)≤t

E[(g(x)− y)2] ≤ E
[
(f≤t(x)− y)2

]
= E

[(
(f≤t(x)− f(x)) + (f(x)− y)

)2]
≤ 2E

[
(f≤t(x)− f(x))2

]
+ 2E[(f(x)− y)2]

≤ O(ε) + 8P[f(x) 6= y] = O(ε) + 8OPT.

This calculation tells us that if the optimal classifier we are competing against has a
low-degree approximation, then running polynomial regression leads to something
with test loss roughly order OPT plus epsilon.

Solving ming:deg(g)≤t E[|g(x) − y|] and taking sgn(g(x) − s) for optimal s upgrades
this to OPT + O(ε) “for free” (based on a work by Kalai, Klivans, Mansour, and
Servedio in 2006 [KKMS05]) (“L1 polynomial regression”).

A brief note: while Fourier analysis is no longer relevant beyond the uniform
distribution, the perspective of low-degree approximation and polynomial regres-
sion is still useful.

For example, if a concept class C can be represented exactly as sgn(p(x)) for a
low-degree polynomial p, we can learn functions from C over any input distribution
by running halfspace learning over “feature space” (xs)|S|≤t with runtime nO(t).

This is reminiscent of a result from Klivans and Servedio from 2001 [KS01], which
is that DNFs can be expressed as degree-t polynomial threshold functions for
t = Õ(n1/3).

8

References

[DKKLMS17] Diakonikolas-Kamath-Kane-Li-Moitra-Stewart. Robustly learning a
gaussian: Getting optimal error, efficiently. SODA, 2017.

[KKMS05] Kalai-Klivans-Mansour-Servedio. Agnostically learning halfspaces.
Proceedings of the 46th Foundations of Computer Science, 2005.

[KS01] Klivans-Servedio. Learning DNF in time 2Õ(n1/3). Proceedings of the
26th Annual Symposium on Theory of Computing, 2001.

[LMN93] Linial-Mansour-Nisan. Constant depth circuits, fourier transform,
and learnability. Journal of the ACM, 1993.

[Val84] Valiant. A theory of the learnable. Communications of the ACM, 1984.

9

	Finishing Lecture 11
	Notational Reference
	A Brief Recap
	Proving Lemma 2
	Recap of Robustness

	Introduction to Supervised Learning
	PAC Learning
	Introduction
	Empirical Risk Minimization

	Boolean Functions and Fourier Analysis
	Introduction
	Fourier Analysis of Boolean Functions
	Low-Degree Algorithm
	A Remark on Agnostic Learning

