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Lecture 11: Classification under Massart noise

1 Introduction

We have been discussing the task of robust statistics: How can we infer properties
of the data generating process when we can only observe some (adversarially)
perturbed version of the data?

So far, all of the tasks we have considered have been unsupervised (e.g. robust
mean estimation). In these notes we will extend our study to the supervised task of
halfspace learning (a.k.a. linear binary classification or perceptron learning).

2 PAC halfspace learning

In this task:

1. A set of points x1, . . . , xn is sampled from some distribution D.

2. Each point is assigned a label yi = sgn(⟨w∗, xi⟩), where w∗ is the normal vector
of the “ground truth” separating hyperplane.

3. Given the dataset of points and labels, we would like to construct a “good”
estimator f(x) of y. In particular, we would like f to have low generalization
error: On an iid test sample x ∼ D, we would like the misclassification
probability (a.k.a. the test error or generalization error)

Pr[f(x) ̸= sgn(⟨w∗, x⟩)]

to be at most some small ε.

Today we will focus on the proper learning case in which f(x) is constrained to
have the same form as the ground truth function, i.e. in this case f(x) = sgn(⟨w, x⟩)
for some w ∈ Rd. (This was also the case in Pset 0 Problem 2 in which the labels
were generated by hyper-rectangles instead of hyperplanes.) Constrast this with the
improper learning case in which f(x) could belong to some other function class,
e.g. the class of neural networks.
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There has existed efficient algorithms for this problem since the 50s (eg the
perceptron learning algorithm of [Ros58]). In particular, each data point imposes a
linear constraint on w, allowing one to phrase this task as a linear programming
problem, which can then be efficiently solved. These algorithms are generally
distribution-free: they do not make any assumptions about the data distribution D.

However, real data is never perfectly separated, and so we will consider three
noisy versions of this problem, bringing us into the domain of robust statistics.

1. We will first analyze the simple case of random classification noise (RCN), in
which each label yi is independently corrupted with some probability η.

2. Then we’ll discuss the agnostic learning setting, in which the covariates and
labels are generated by some arbitrary joint distribution q. We’ll see that
learning “good” halfspaces in this setting is computationally difficult without
making additional assumptions on q.

3. Finally, we’ll analyze the Massart noise model, which extends the RCN model
by allowing the flip probability η(x) to depend on the covariates. We’ll then
present a polynomial-time, distribution-free, proper algorithm for learning
halfspaces in this setting.

3 Random classification noise

Under the RCN corruption model, the data is first generated according to Section 2,
and then each label yi is flipped independently with probability η ∈ [0, 1/2).

Theorem 1 (Halfspace learning under RCN is efficiently solvable [BFKV98]). There
exists a polynomial-time distribution-free algorithm for learning halfspaces under RCN.

This algorithm modifies the original perceptron learning algorithm [Ros58] by intelligent
outlier removal. See [Coh97], [DV04], [DV08] for details.

It turns out that, when the data is “nicely separated”, halfspace learning under
RCN can be formulated as a convex problem that can be efficiently solved. Precisely,
define the margin of the hyperplane orthogonal to w to be the largest τ for which
|⟨w, x⟩| ≥ τ almost surely over x ∼ D. Visually speaking, this means that there will
be a gap of width 2τ around the decision boundary. We’ll now show that for τ large
enough, we can simply run stochastic gradient descent against the LeakyReLU over
the dataset.

Define the zero-one loss for a hyperplane with normal vector w as
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err(w) = Pr
x,y

(sgn(⟨w, x⟩) ̸= y)

= E
x,y
[1[−y · ⟨w, x⟩ > 0]].

However, the indicator function is difficult to minimize: It is nonconvex and flat
everywhere. Let’s instead approximate it by a convex surrogate.

We might consider using ReLU(z) = max{0, z}, which is piecewise linear and
agrees in sign with the indicator function. But this penalizes large deviations from
zero very significantly while entirely ignoring any properly classified points. The
LeakyReLU function addresses both of these issues:

LeakyReLUλ(z) =

(1− λ)z z ≥ 0

λz z < 0

Typically, we’ll set λ to roughly scale with the flip probability η from RCN.

Theorem 2 (Gradient descent on LeakyReLU learns large-margin halfspaces from
RCN data [Byl94]). Gradient descent on LeakyReLU(−y · ⟨w, x⟩) learns large-margin
halfspaces from RCN data. (This is an implicit consequence in the cited paper.)

3.0.1 Derivation of LeakyReLU from RCN

It turns out that LeakyReLU is the “canonical” loss function for RCN data in the
following sense. Consider the generalized linear model setting:

E[y | x] = u(⟨w∗, x⟩)

where u is some link function (a.k.a. activation function or transfer function).
Note that setting u to be the identity mapping gives linear regression as a special
case. Learning halfspaces under RCN can also be rephrased as such a problem:

E[y | x] = η · (−sgn(⟨w∗, x⟩)) + (1− η) · sgn(⟨w∗, x⟩)
= uη(⟨w∗, x⟩)

where uη(z) = (1− 2η) · sgn(z).

Theorem 3 (Canonical loss for monotone link functions [AHW95]). For a nondecreas-
ing link function u, there exists a “matching” convex loss function ℓu(w;x, y) in the sense
that∇wℓu(w;x, y) = (ŷ − y)x where ŷ = u(⟨w, x⟩).
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Proof. We can construct such a loss function as follows:

ℓu(w;x, y) :=

∫ ⟨w,x⟩

0

(u(r)− y) dr.

The gradient result follows from the chain rule and the fundamental theorem of
calculus. We skip the proof of convexity.

It turns out that LeakyReLU is in this sense the matching loss for the uη obtained
from RCN:

ℓuη(w;x, y) =

∫ ⟨w,x⟩

0

[(1− 2η) · sgn(r)− y] dr

= (1− 2η)|⟨w, x⟩| − y⟨w, x⟩

Note that

LeakyReLUλ(z) =
1

2

[
(1− 2λ)|z|+ z

]
and so LeakyReLUη(−y · ⟨w, x⟩) =

1

2
ℓuη(w;x, y)

after applying | − y⟨w, x⟩| = |⟨w, x⟩|.

Theorem 4 (Large test loss implies large matching loss [AHW95]). If the link function
is Lipschitz with coefficient L (that is, for all a, b ∈ R we have |u(a)− u(b)| ≤ L · |a− b|)
then if w achieves large squared test error it will also achieve a large matching loss:

E
x,y
[ℓu(w;x, y)− ℓu(w

∗;x, y)] ≥ 1

2L
· E
x

[(
u(⟨w, x⟩)− u(⟨w∗, x⟩)

)2
]
.

Proof. This can be derived as follows:

E
x,y
[ℓu(w;x, y)− ℓu(w

∗;x, y)] = E
x,y

[∫ ⟨w,x⟩

⟨w∗,x⟩
(u(r)− y) dr

]

= E
x

[∫ ⟨w,x⟩

⟨w∗,x⟩

(
u(r)− u(⟨w∗, x⟩)

)
dr

]

≥ 1

2L
E
x

[(
u(⟨w, x⟩)− u(⟨w∗, x⟩)

)2
]

We see that RCN is a relatively weak noise model that is often too simple for
practical settings. Let us now consider a more sophisticated corruption model.
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4 Agnostic learning

We now relax the assumptions on x and y. Rather than assuming some particular
relationship between them, e.g. the previous halfspace labelling scheme given by
w∗, we let them be drawn from some arbitrary joint distribution q over Rd ×±1.

Now, rather than finding a “true” decision hyperplane (which does not generally
exist), we would like to compete with the best possible hyperplane, that is, the one
that achieves the least generalization error:

OPT = min
w′

Pr
x,y

[sgn(⟨w′, x⟩) ̸= y].

We seek to learn a classifer that achieves generalization error OPT + ε. This is the
task of agnostic learning.

We can frame agnostic learning in terms of an “adversary” as follows. We
imagine that there exists some separating hyperplane orthogonal to w∗ that gen-
erates the dataset xi, yi according to Section 2. Then we can imagine an adversary
that “corrupts” an η = OPT fraction of the data in order to simulate the true joint
distribution over x, y.

Compare this with the strong contamination setting in which the adversary
is allowed to arbitrarily modify an arbitrary η fraction of the data. In the agnostic
learning setting, our adversary serves primarily as an analytical tool that frames
the data generating process in terms of the “corruption” of a labelled dataset.

Can we still design provably accurate and efficient algorithms in this setting?
For certain distributions q, e.g. where x is uniform over the unit sphere or comes

from a log-concave distribution, we can prove strong polynomial-time guarantees.
But the efficient algorithm for RCN halfspace learning from [BFKV98] makes no
assumptions about the covariate distribution. Can we also make distribution-free
guarantees in the agnostic learning setting?

Generally speaking, no: there exist counterexamples that demonstrate that even
“weak” improper agnostic learning is computationally hard.

Theorem 5 (Agnostic learning is computationally hard [Dan16], [Tie23]). Under
standard complexity assumptions, there exist problem instances where, even if there exists an
accurate optimal hyperplane, i.e. OPT ≈ 1%, it is hard to find any classifer, not necessarily
a hyperplane, achieving even 49% – random guessing!

You can find other lower bound results on agnostic learning at [KKS06], [KK14],
[DV21], [DKPZ21].

We’ve now seen two extremes of the noise model landscape:

• RCN, for which we can design efficient distribution-free algorithms;
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• Agnostic learning, where we require significant assumptions on the data
distribution to make any substantial guarantees.

Do there exist rich corruption models for which we can prove efficient distribution-
free algorithms?

5 Massart noise and semirandom noise

One such noise model is Massart noise, which is almost identical to RCN (3), except
that instead of all labels having the same flip probability, we now allow the flip
probability to depend on x. That is, to sample from this corrupted distribution, we
first sample x ∼ D. Then we observe y = sgn(⟨w∗, x⟩) with probability 1 − η(x);
otherwise, we observe the opposite (incorrect) label.

At first glance, this seems an easier task than RCN, since as long as η(x) is
bounded above by some η, the total proportion of flipped labels is in fact less than
the number we would expect under RCN with flip probability η. (We can imagine a
“helpful adversary” who comes and cleans some of the corrupted points.) But this
heterogeneous flip probability creates additional structure that is more difficult to
deal with! Composite noise models of this form, where the data is first generated by
some simple noise model and then some of the corrupted points get “cleaned”, are
called semirandom, and are useful for testing whether or not algorithms depend
on oversimplifying assumptions (such as homogenous noise).

For example, does the LeakyReLU-based algorithm for RCN still work for learn-
ing halfspaces of a given margin τ under Massart noise? The answer is no in the
worst case. The following theorem generalizes this to any convex surrogate loss
function.

Theorem 6 (Convex surrogate loss functions are not robust to Massart noise [DGT19]).
Given any convex surrogate loss function, its minimizer w will achieve at least Ω(η/τ)
misclassification probability in the worst case, i.e.

Pr
x,y

[sgn(⟨w, x⟩) ̸= y] = Ω(η/τ).

Given this, are there any polynomial-time algorithms for this task? This question
was posed in and has been studied since [Slo88] (see for example [Coh97]).

5.1 Computational complexity for Massart noise

Theorem 7 (An improper learning algorithm [DGT19]). There is a distribution-free
improper algorithm that achieves η + ε misclassification error. That is, the output is
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not a hyperplane, but rather a linear threshold circuit: a decision tree where each node
corresponds to a different “band” in input space.

Can we get the same guarantee with proper learning? Yes!

Theorem 8 (A proper learning algorithm [CKMY23]). There is a polynomial-time,
distribution-free, proper learning algorithm that also achieves η + ε misclassification error.

Additionally, if the margin τ is known beforehand, there is also a O( d
τ4ε5

)-sample, linear-
time, distribution-free, proper learning algorithm that achieves test loss η + ε. Though
this takes a linear number of samples in the dimensionality of the data, the polynomial
dependence on τ and ε is of quite high degree.

The rest of these notes will describe and analyze the former proper learning
algorithm in detail.

First, however, it is worth asking: is η + ε the correct baseline? This bound only
uses the uniform noise level η and doesn’t take into account the heterogeneous noise
in the Massart setting. Ideally, we’d want to achieve some OPT closer to Ex[η(x)].
However, [CKMY23] demonstrate that achieving OPT + ε is computationally hard.

For other lower bounds on Massart noise halfspace learning, see [DK21], [NT22],
and [DKMR22].

6 Filtertron as a two-player game (proper halfspace
learning)

We can phrase this algorithm in terms of a two-player minimax game between Alice
and Bob. Alice is trying to find an optimal w as if the data were corrupted by RCN
(i.e. by minimizing the LeakyReLU loss function), while Bob is trying to “disprove”
Alice’s attempt by finding a reweighting ϕ(x) of the data that makes her attempt
perform poorly:

min
∥w∥=1

max
ϕ:Rd→R

E[LeakyReLUλ(−y · ⟨w, x⟩) · ϕ(x)]

Is this game a good model for our algorithm? That is, does an equilibrium for
this game give a good w? It turns out under Massart noise that Alice’s best strategy
is to play w∗. In fact, minimizing this objective is equivalent to achieving optimal
test loss.

To make Bob’s optimization problem tractable, rather than search over all
reweightings of the entire input space, we’ll only search over the width of the
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margin around w to find the rectangular area that judges Alice’s boundary most
harshly. This is now a practical optimisation over a single scalar variable:

min
∥w∥=1

max
γ∈R

E
x,y
[LeakyReLUλ(−y · ⟨w, x⟩) | |⟨w, x⟩| ≤ γ] (1)

It turns out this simplification is still accurate, that is, that the equilibria for this
simplified game also achieve test error η + ε.

6.1 Filtertron

The actual optimization of this objective proceeds by alternating between Alice
computing projected gradient descent steps on the objective and Bob trying to
“disprove” Alice’s solution until a satisfactory solution is reached.

Let Lγ(w) denote the objective in Eq. (1). We compute the “Filtertron” algorithm
as follows:

1. Alice: initialize w to arbitrary unit vector

2. Repeat:

(a) Bob plays maximizing slab γ

(b) If zero-one loss of w is less than η + ε, return

(c) Otherwise: update w ← Π(w − η · ∇Lγ(w))

6.2 Filtertron analysis

The analysis of this algorithm will proceed through two key ideas:

1. Show that the true halfspace w∗ achieves small loss regardless of γ.

2. Show that Bob can penalize any bad move by Alice. i.e. for a w with subopti-
mal error, there exists some γ that causes Lγ(w) to be large.

We’ll use the following notation:

Lγ(w) = E
x,y
[ℓ(w;x, y) | |⟨w, x⟩| ≤ γ]

ℓ(w;x, y) = LeakyReLUλ(−y · ⟨w, x⟩) err(w;x, y) = 1[y ̸= sgn(⟨w, x⟩)]
ℓ(w;x) = E

y|x
[ℓ(w;x, y) | x] err(w;x) = E

y|x
[err(w;x, y) | x]

ℓ(w) = E
x,y
[ℓ(w;x, y)] err(w) = E

x,y
[err(w;x, y)]
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Now consider the error for the true w∗. This is just the probability that the
sample gets corrupted:

err(w∗;x) = η(x) ≤ η ∀x

Intuitively, we aim to show that if Alice plays w∗, then regardless of what γ Bob
plays, Lγ(w∗) will be small.

Theorem 9 (The true halfspace achieves small loss). Suppose λ ≥ η+ε and the margin
for w∗ is τ . We aim to show that Lγ(w∗) ≤ −τε.

Proof. For now, we’ll consider all points, i.e. assume γ =∞. The proof will general-
ize to whatever finite γ Bob plays. Then we seek to decompose L∞(w∗) = ℓ(w∗) by
casework.

Consider the input to LeakyReLUλ(−y · ⟨w, x⟩). On a correct classification
y = sgn(⟨w, x⟩), this is negative, and so the LeakyReLU has slope 1− λ here. Oth-
erwise, for y ̸= sgn(⟨w, x⟩), this is positive, and so the LeakyReLU has slope λ here.
Decomposing the loss in this way gives

L∞(w∗) = ℓ(w∗)

= E
x,y

[
1[y = sgn(⟨w∗, x⟩)]︸ ︷︷ ︸

1−err(w∗;x,y)

·
(
λ · (−|⟨w∗, x⟩|)

)
+ 1[y ̸= sgn(⟨w∗, x⟩)]︸ ︷︷ ︸

err(w∗;x,y)

·
(
(1− λ) · |⟨w∗, x⟩|

)]
= E

x,y
[(err(w∗;x, y)− λ) · |⟨w∗, x⟩|]

= E
x

[(
E
y|x
[err(w∗;x, y)]︸ ︷︷ ︸
=err(w∗;x)≤η

− λ︸︷︷︸
≥η+ε

)
· |⟨w∗, x⟩|︸ ︷︷ ︸

≥τ

]

≤ −τε

In particular, note that at each step along the way, we can safely condition on
events defined on x without affecting the reasoning. In particular, we can condition
on |⟨w, x⟩| ≤ γ to demonstrate that this bound holds for any γ.

Let us continue with the second claim.

Theorem 10 (Suboptimal moves are punishable). If Alice plays a poor move w s.t.
err(w) ≥ λ = η + ε, then Bob has a good choice of γ that “blames” Alice i.e. Lγ(w) ≥ 0.

Proof. We’ll prove this by contradiction.
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We’ll begin with the same decomposition from before, with the added condition-
ing:

Lγ(w) = E
x

[
(err(w;x)− λ) · |⟨w, x⟩| · 1[|⟨w, x⟩| < γ]

]
Now assume for contradiction that this is negative for all γ. Our method of

attack is to show that the error err(w;x) would be too large and surpass η.
The current issue is that the term |⟨w, x⟩| is difficult to bound. To get around this,

consider this simple equality:

z =

∫ ∞

0

1[s < z] ds

for z ≥ 0. Taking z = |⟨w, x⟩| and then rearranging the integral outside the expecta-
tion gives

Lγ(w) =

∫ ∞

0

E
x

[
(err(w;x)− λ) · 1[s < |⟨w, x⟩| ≤ γ]

]
ds.

Since by assumption this quantity is negative, we know for some s(γ) that the
integrand must be negative. In particular, since negative values are nonzero, the
indicated event must hold, and so we must have s(γ) < γ.

Now, by considering Ls(γ), we can apply the same reasoning again to achieve
s(2)(γ) < s(1)(γ) < γ (where the superscript indicates iteration). Repeating this gives
a monotonically decreasing sequence s(i)(γ) for i ∈ N. Now consider partitioning
the interval [0, 1] according to these points. We know that in each of these sub-
intervals [s(i+1)(γ), s(i)(γ)] that the integrand Ex[err(w;x)− λ] is negative. But then
adding all of these sub-intervals together gives

E
x
[err(w;x)− λ] < 0

so err(w) < λ = η+ε. But this contradicts our original assumption that Alice played
a poor move with err(w) ≥ η + ε. So Bob must be able to choose some γ such that
Lγ(w) ≥ 0.

Together, these imply that an approximate equilibrium for this game yields a
good halfspace w with error η + o(1).

7 Experiment robustness and fairness

We conclude this lecture by discussing some positive “side effects” of robust algo-
rithms, even against noise models that they were not specifically designed for!
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Specifically, consider the task of predicting an individual’s income based on
their demographic information in becker_adult_1996. One possible attack might
be to tamper with the label of users in a specific marginalized group. However,
despite Filtertron not being designed to satisfy fairness guarantees, it naturally
outperforms other algorithms in this regard, including random forests, logistic
regression, or gradient descent on other convex surrogate losses. This experiment
also demonstrates that Massart noise is not necessarily easier than RCN despite
fewer flips.
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