CS 224 Fall 2023 Scribes: Kerem Dayi
October 11th, 2023

Lecture 10: Robust statistics II: list-decodable
learning, subspace isotropic filtering

1 Motivation

In the previous lecture, we looked at the problem of recovering the true mean of
a distribution when we had samples from an unknown distribution g, where an
fraction could be adversarially corrupted. In that setting, there is a fundamental
limitation that imposes strict upper bounds on 7. For instance, if > 1/2, there
is no hope that we can recover the true mean i as there is no way of identifying
which part of the distribution comes from the adversary vs. true dataset.

In this lecture, we will investigate a surprising result: If we relax our goal to
outputting a set of ‘means,” one of which is close to the true mean, then we can
actually create an efficient algorithm that even works when n > 1/2. So, the setup
is as follows.

2 Setup

Let 0 < a < 1/2 be a small constant, denoting the fraction of good points (non-
corrupted). Let ¢ be an arbitrary distribution with mean ; € R? and covariance

*

with ¥ < Id,;. Nature draws samples 27, ..., 2 from ¢, and an adversary corrupts
an arbitrary 1 — « fraction of this dataset. We are given the corrupted dataset {z;}];.

Notice that the number of corrupted points is larger than the number of good
points. For instance, the adversary can corrupt the dataset by creating clusters of
size an, and there would be many different explanations for the data. In this case,
recovering the true mean can be impossible. To get around this, we change the
problem formulation in the following way.

Goal: Output a list of mean estimates /i, . . ., fi,, for m = O(1/«) such that one
of these is close to the true mean, i.e., 3j € [m] such that||x — ;|| is small.

Here, you might wonder what a good baseline for this problem is. Let’s consider
the following scenario. If the corrupted dataset is a mixture of £ = O(1/a) bounded-
covariance distributions, then each cluster has radius ~ v/d. Then, projecting the
clusters onto the subspace spanned by the means, then we expect each cluster to
have radius v/k. So, we should expect that as long as the clusters are v/k-separated,
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we can hope to produce a list of estimates, at least one of which is O(v/k) = O(1//a)
close to p.

3 Algorithm

In this lecture, we look at a simplified version of the algorithm given in [DKK™21].
Their main theorem, Theorem 1, is given below:

Theorem 1 (informal). Let o € (0,1/2). Let D be a distribution with unknown mean
p € R and covariance matrix ¥ < o?Id. Let T C R® have |T'| = n, an « fraction of which

is drawn independently from ~ D. For n = ) <g> , algorithm outputs a list of m = O(1/«)
estimates {[i;};efm) S0 that minjey || — 2;]| = O(o\/1/) with high probability. The
runtime of the algorithm is
~ 1
()
« «

In the paper, in theorem 2, they also talk about a way of getting rid of the 1/a®
dependency, by adding a /log a~! term to the estimation error. Now, we will give
our setup and simplified algorithm that runs in O(n?d/a) time. First, to not worry
about concentration inequalities, we assume the following]]]

Assumption 1. There is a Q(«) fraction of “good points” G C [n] such that

ﬁ Y= w7 S

op

3.1 Finding subspace I close to true mean suffices

Observation: Suppose we could find a subspace V' C R?s.t. i is close to V, i.e.
|mtn] < 00 /va)

where IIj; is the projector to the orthogonal complement of V. Then, we could just
do the following

1. Pick O(1/a) points at random from the dataset.

IThis holds when the adversary is additive, ie. there are an i.i.d. draws from g in the dataset. See
[CSV17]. Also see problem set 3, problem 1 for justifications of assumptions like these.



2. Project to V and output.

To see why this works, we will bound the distance ||IIy (z — )|, with high
probability. Notice that the covariance matrix of Iy (z; — 1) satisfies

@l ZHV — )11 HV|G| > (x — ) 'y

i€eG
=< IIyIdIL, =11,

where G is the subset of ‘good’ points that satisfy Assumption (Ijand the last step
follows from Assumption [l Then, taking traces, we have

e ;GHHV Wl < Telly = dim(V) = O(1/a)

Then, the expected square distance of the projection a point in G to the projection
of 11 is O(1/a)), where the expectation is due to the randomness of randomly select-
ing a point from G. By markov we can conclude that 99% of points in G satisfy
|y (z; — )| = cO(1/a) = O(1/a) by choosing c suitably. Then, because G con-
tains an points, choosing ©(1/«a) (with a sufficiently large constant term) points at
random ensures that we get a point from G with high probability, and since a high
fraction of points in G satisfy the bound above, we have that with high probability
we output a point that has projection close to the projection of the mean. Because
we assumed the component outside of V' is small, we are done.

Now, we will actually change our claim a bit. In fact it suffices to find a subspace
V for which we can estimate I1i>. up to small error O(1//a). We would just need
to add our estimate (correction) to the projections Iy z; we obtained in the previous
part.

3.2 Finding subspace |/ with iterative filtering

Now, we get to the main algorithm which will enable us to find a subspace V for
which TI{; i1 can be estimated to small error. With a similar approach to last lecture,
we want to iteratively elimiate outliers by looking at how they contribute to the
top k¥ = O(1/a) components of ¥,,. Recall, from last lecture that we defined the
following weighted mean and covariances
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Algorithm 1: SUBSPACE ISOTROPIC FILTERING (SIFT)

Output: Estimates {; }",
w; + 1/n

2 while \;(Z,,) > \/le—w do

3 | V, « top k eigenvectors of ¥,
s | WP =vin,V

(K)\—1/27/T 2
5 Ti<—H<Ew ) V., (m,—,u)H
2

[y

6 Tmax < maXi,w¢>O T;
7 w; = wi(1 — 7/ Tmax)
s end

~ HL
9 W < i fioy

1
1 Return {ITyz; + @}l

o

Input: Corrupted dataset {z;};, number of components k = O(1/«)

// initially assign equal weights

// top k ’components’ of X,

Pick ©(1/a) points at random, {z;}],

// orthogonal component

We define the SIFT algorithm in Algorithm

In Algorithm (1}, we initialize the weights w; equally and then at each step,
downweigh the points that contribute the most to the top & components of 3,,.
We do this until the £’th eigenvalue of ¥, is still large, which allows us to bound
the error in V- when we terminate. Notice that in 7; we ‘whiten’ the projected
distance to mean V| (z; — ) with (ng ))‘1/ % to make sure components contribute
equally to the score. In Table (1, we compare this algorithm to the algorithm from
the previous lecture where we were only considering the top eigenvector while

eliminating outliers.

n < 1/2 (previous lecture)

list decodable learning

Invariant on w;

Termination cond.

Scores (7;)

Condition on 7;

Spectral Signature

Ziedean (% o wl) < Ziebad (% - wl)
1Zwlop S 1
Ty = <u7 Ty — ,uw>2/ u tOp eig.vec.
Ziedean w;T; < % Zieall W;T;

litw — 12l S Vi1 + S0l

Ziedean Wy 2 O‘\/Zze[n] wy
M(Bu) S 2=k = 6(1/a)

(B)N—1/27/T 2
o= | = e

ZiECIean WiTi < 1 z:iEaII WiTi
icclean Wi T 2 Zieall Wi

< \/ /S wil Bl
pl s 2

| £t

Table 1: Comparison of SIFT to Simple iterative filtering from previous lecture

Here, the condition on 7; is the condition that has to hold for the invariant to



be maintained. Notice that the termination condition now looks at the magnitude
of the £’th eigenvector instead of the operator norm. Similarly, we have that the
condition on 7; is now normalized, by dividing by the sum of the weights.

4 Analysis of SIFT

Here, we analyse SIFT. The goal is to show that
1. When the algorithm terminates, the output is correct.

2. We maintain the invariant on w; given in Table (Il when the condition on 7;

holds.
3. The condition on the 7; holds when the algorithm is still running .

4. Prove the spectral signature lemma.

4.1 Termination condition implies output is correct

Recall that V,, has columns which are top-k eigenvectors of ¥,,. We initially prove
that if we hit the termination condition, we estimate IIj; x to small error. Notice
that when we apply the spectral signature lemma to data projected to V-, we get

‘5% 1+‘/zi:wi

g%\/1+ > widi(Ew)
< %\/1+\/Zwi/\/2wi < %

So, we have a O(1/«) dimensional subspace V,, and an O(1/y/«)-accurate esti-

mate of ITy; . This is exactly the condition required to run our random selection
algorithm as described in Section 3.1}

|11, e = T T 3, 1T

op

4.2 Maintaining invariant given condition on 7;
We show that if the condition on 7; holds, ie

Zieclean WiT; < 1 ZiEaII W;T;
Zieclean Wy 2 Zieall wy




then, downweighting maintains the invariant on the w;, which is )", ..
/Y ;can Wi First, note that w; < w; (1 - ) Then, it will suffice to show that

Tmax

w; >

/ /
Ziedean W Zieall w;

>

ZiEclean w; Ziea“ wy

This is because multiplying the cross terms tells us that the relative weight of the
clean terms has increased. Now, we have

/ . w; (1 — L) .
Ziedean w; o Zzedean ? ( Tmax —1_ 1 ) Ziedean W;T;
Ziedean Wy Ziedean wi Tmax Zieclean wi

(@ 1 L 1) wim

Tmax 2 Zieall Wi

(b) 1 Zieall w;

W2 — Lgiean
2 ZiEaII Wy

(;) Zz‘eallwg

TV D ican wi

where (a) follows from the condition on 7;, (b) follows from the definition of w;, and
(c) follows from the inequality 1 — 32 > /1 — z when z < 1H

4.3 Maintaining Condition on 7; given we haven’t terminated

Now, we show that if we haven’t hit the termination condition, the condition on 7;
holds. We want to show

- Z w;T; < %;Zwm 1)

Ziedean w; icclean Zieall Wi i€all

We initially note that

)\ —1/27,T 2
i = | ®E) 2V (@ = p)

|
=
/N
—

)2V (21— ) — )V (B0)2)
9 (20) A AV @3- ) — ) V)
)LV (i = ) (25— ) TV))

2We have (1 — 2/2)? = 1 — z + 2%/4 > 1 — x. Taking square roots of both sides gives desired
result.
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where we used the cyclic property of trace in (a), and we refer to the trace inner
product at the end. So,

1 1

5~ § w;T; =
2 Zieall Wi icall

ﬁ Z<(21(5)>_17 Vu—;r(xz — ) (@i — 'UW)TV»

(2N~ VIS, V)

>—t[\.’>|r—k L\:JI»—t

= (SO 50) = ST = /2

N |

which is the RHS of Eq. . Then, for the LHS, we initially do the following for
Ty — Hw

Z W; X Z WiTi — Puw

zEcIean zGcIean
With this motivation, let y,, ; = Z; Y icclean Wi; and we define the ‘good covari-
i€clean
ance’

1
Ew, é - wz( Z; ,uw )(xz - ,uw )T
7 Ziedean w Z 7 !

7.
i€clean

So that
2 2
< 2| (20) T (o = )|+ 2| () TV g — )

= 2v; + 20; (2)

where we used the inequality [|a + b||* < 2||a||” +||b||” and fi,, is the mean of the
good points. Then,

Z wz’Yz—2 Ek) VTZU)QV>

i€clean

Zzedean 4
1

similar to before. Now, we note that ¥, , < D ap— > icctean Wi — p)(@; — p) "

because X, , is the empirical covariance of the good points. Then, using w; < 1/n <
a/|G| we get

1
Ywg = Z wi(w; — p) (i — p)"

Zieclean wi zeclean
T
= Z — | > ( — 1)
i€clean ™ i€clean
(a) o
<= 1d
Ziéclean w;



where we used Assumption in (a). Then,

2a
2((Z) L,V 8y g Ve) € e - Tr(B®
7 Zieclean Wi

Then, because the eigenvalues of Tr(S) ! are < / Y ican Wi We have
20 . Tr(zgc))—l 5 20 V Zleall ke <>k ]’C/4
Ziedean Wi Ziedean Wi

where the last inequality can hold by choosing the constant in the termination
condition large enough. So, we have bounded the first term by k/4 and it suffices to
bound the second one by £ /4 too. So,

2

2
Ziedean Wy

Now, we note that E[z|E[z]" < E[zz"] by Jensen. So,

D iy = 2|| () VT G — )|

i€clean

2

1
(Hw — Haw,g) (P — ,Uw,g)T = Z—w Z Wi (25 — ) (T — Mw)T
i€clean i clean
(a

T
= > " wi( — )
Zzedean i w v

¥ eall
D ical Wi
i€all Ew
ZiECIean w;

=

So,

2 22163” L <oV 2 icall Wi < 2 <
a

2 Zzeclean w; o

by taking k£ > 8/« since k = O(1/«). Therefore, in Eq. (2) we have bounded both
terms by k/4, bounding the LHS by £ /2. Since in Eq. (1) the RHS was £/2, we have
the desired result.

2| =82V Gt — )

|

4.4 Spectral Signature Lemma

Now, what remains to show to conclude the analysis of SIFT is the spectral signature
lemma. lLe.,

1
1+

1
it — pll S NG T

||Zw||op



To do this, we will show that both 1, and p are close to i where

A

il W, T

zeall

where w; | G| 1[i € G] is the indicator of the good points. Here, /i is the averaging
of the good points under the weighting given by w. We want to do this because we
can relate the distance ||y — p|| to|p — || and || g — f2|]-

Then, we start with || i — x/|*. We have

1 = ull* = sup <ﬂ—u,U>2

ueSd—1

= sup (
ueSd—1

1
2 sup —zwiw:m—w

uegdﬂ w* ’LU

1
< — S 2
< o, i
(b)
N
~ n{w, w*)

where (a) follows from the convexity of f(z) = a:2 and (b) follows from the
covariance bound on the good points, i.e. Assumption[I} Now, note that

i€clean V i€all

from the invariant on the w;. We want to lower bound the sum of all w;. Therefore,
we use the invariant (lower bound on good w;) to get

E w; > E w; >« E w;
i€all i€clean i€all

S0, D ican Wi > o?. Then, combining with Eq. , we have

1 <l Gl 1 1
n(w, ~an \/ icall wz

Hence, we conclude that || — af| < .

=1/a

3If f is convex and >, a; = 1witha; >0, then f(>°, a;x;) <>, a; f(x;) This is by definition of
convexity.



Now, we look at the distnace of weighted mean ,, to the true mean g, || ., — 1.
Using a similar convexity inequality to the previous part, we have

wa _Mw7u>2

i€all

A 2
it — pol|” < sup

ueSd—1 \W, W

< s e [ S e Y e

uesd—! U) w* i€all zeall Z'zGaII
D icall W T
= Licall 3 >
(w,w)G] estn
. Zieallwi ||2 H
 (w,w) |G

where (a) follows from w; < | é| Then, using the bound for (w, w*) from Eq. H we
have

< Zea">|G|” Follon = |cl|G|¢zl IS0y = 5, 3 el
w, w* o W o
i€all 77 i

i€all

Combining this with the bound of || — /i||, we get

i ) 1
e = pall® < 20lfa = il + 20— g | S = | 1+ D will Bl
icall

as desired.
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