
CS 224 Fall 2023 Scribes: Kerem Dayi
October 11th, 2023

Lecture 10: Robust statistics II: list-decodable
learning, subspace isotropic filtering

1 Motivation

In the previous lecture, we looked at the problem of recovering the true mean of
a distribution when we had samples from an unknown distribution q, where an η

fraction could be adversarially corrupted. In that setting, there is a fundamental
limitation that imposes strict upper bounds on η. For instance, if η ≥ 1/2, there
is no hope that we can recover the true mean µ∗ as there is no way of identifying
which part of the distribution comes from the adversary vs. true dataset.

In this lecture, we will investigate a surprising result: If we relax our goal to
outputting a set of ’means,’ one of which is close to the true mean, then we can
actually create an efficient algorithm that even works when η ≥ 1/2. So, the setup
is as follows.

2 Setup

Let 0 < α < 1/2 be a small constant, denoting the fraction of good points (non-
corrupted). Let q be an arbitrary distribution with mean µ ∈ Rd and covariance Σ

with Σ ⪯ Idd. Nature draws samples x∗
1, . . . , x

∗
n from q, and an adversary corrupts

an arbitrary 1−α fraction of this dataset. We are given the corrupted dataset {xi}ni=1.
Notice that the number of corrupted points is larger than the number of good

points. For instance, the adversary can corrupt the dataset by creating clusters of
size αn, and there would be many different explanations for the data. In this case,
recovering the true mean can be impossible. To get around this, we change the
problem formulation in the following way.

Goal: Output a list of mean estimates µ̂1, . . . , µ̂m for m = O(1/α) such that one
of these is close to the true mean, i.e., ∃j ∈ [m] such that

∥∥µ− µ̂j

∥∥ is small.
Here, you might wonder what a good baseline for this problem is. Let’s consider

the following scenario. If the corrupted dataset is a mixture of k = O(1/α) bounded-
covariance distributions, then each cluster has radius ≈

√
d. Then, projecting the

clusters onto the subspace spanned by the means, then we expect each cluster to
have radius

√
k. So, we should expect that as long as the clusters are

√
k-separated,
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we can hope to produce a list of estimates, at least one of which is O(
√
k) = O(1/

√
α)

close to µ.

3 Algorithm

In this lecture, we look at a simplified version of the algorithm given in [DKK+21].
Their main theorem, Theorem 1, is given below:

Theorem 1 (informal). Let α ∈ (0, 1/2). Let D be a distribution with unknown mean
µ ∈ Rd and covariance matrix Σ ⪯ σ2Id. Let T ⊂ Rd have |T | = n, an α fraction of which
is drawn independently from∼ D. For n = Ω

(
d
α

)
, algorithm outputs a list of m = O(1/α)

estimates {µ̂j}j∈[m] so that minj∈[m]

∥∥µ− µ̂j

∥∥ = O(σ
√
1/α) with high probability. The

runtime of the algorithm is

Õ

(
nd

α
+

1

α6

)
In the paper, in theorem 2, they also talk about a way of getting rid of the 1/α6

dependency, by adding a
√

logα−1 term to the estimation error. Now, we will give
our setup and simplified algorithm that runs in Õ(n2d/α) time. First, to not worry
about concentration inequalities, we assume the following1

Assumption 1. There is a Ω(α) fraction of “good points” G ⊆ [n] such that∥∥∥∥∥∥ 1

|G|
∑
i∈G

(xi − µ)(xi − µ)⊤

∥∥∥∥∥∥
op

≲ 1

3.1 Finding subspace V close to true mean suffices

Observation: Suppose we could find a subspace V ⊂ Rd s.t. µ is close to V , i.e.∥∥∥Π⊥
V µ
∥∥∥ ≲ O(1/

√
α)

where Π⊥
V is the projector to the orthogonal complement of V . Then, we could just

do the following

1. Pick O(1/α) points at random from the dataset.

1This holds when the adversary is additive, ie. there are αn i.i.d. draws from q in the dataset. See
[CSV17]. Also see problem set 3, problem 1 for justifications of assumptions like these.
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2. Project to V and output.

To see why this works, we will bound the distance
∥∥ΠV (x− µ)

∥∥
2

with high
probability. Notice that the covariance matrix of ΠV (xi − µ) satisfies

1

|G|
∑
i∈G

ΠV (xi − µ)(xi − µ)⊤ΠV = ΠV
1

|G|
∑
i∈G

(xi − µ)(xi − µ)⊤ΠV

⪯ ΠV IdΠV = ΠV

where G is the subset of ’good’ points that satisfy Assumption 1 and the last step
follows from Assumption 1. Then, taking traces, we have

1

|G|
∑
i∈G

∥∥ΠV (xi − µ)
∥∥2
2
≤ TrΠV = dim(V ) = O(1/α)

Then, the expected square distance of the projection a point in G to the projection
of µ is O(1/α), where the expectation is due to the randomness of randomly select-
ing a point from G. By markov we can conclude that 99% of points in G satisfy∥∥ΠV (xi − µ)

∥∥ = cO(1/α) = O(1/α) by choosing c suitably. Then, because G con-
tains αn points, choosing Θ(1/α) (with a sufficiently large constant term) points at
random ensures that we get a point from G with high probability, and since a high
fraction of points in G satisfy the bound above, we have that with high probability
we output a point that has projection close to the projection of the mean. Because
we assumed the component outside of V is small, we are done.

Now, we will actually change our claim a bit. In fact it suffices to find a subspace
V for which we can estimate Π⊥

V µ up to small error O(1/
√
α). We would just need

to add our estimate (correction) to the projections ΠV xi we obtained in the previous
part.

3.2 Finding subspace V with iterative filtering

Now, we get to the main algorithm which will enable us to find a subspace V for
which Π⊥

V µ can be estimated to small error. With a similar approach to last lecture,
we want to iteratively elimiate outliers by looking at how they contribute to the
top k = O(1/α) components of Σw. Recall, from last lecture that we defined the
following weighted mean and covariances

µw =
1∑
i wi

∑
i

wixi

Σw =
1∑
i wi

∑
i

wi(xi − µw)(xi − µw)
⊤
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Algorithm 1: SUBSPACE ISOTROPIC FILTERING (SIFT)
Input: Corrupted dataset {xi}i, number of components k = O(1/α)
Output: Estimates {µ̂i}mi=1

1 wi ← 1/n // initially assign equal weights

2 while λk(Σw) ≳ 1√∑
i wi

do

3 Vw ← top k eigenvectors of Σw

4 Σ
(k)
w = V ⊤

w ΣwV // top k ’components’ of Σw

5 τi ←
∥∥∥(Σ(k)

w )−1/2V ⊤
w (xi − µ)

∥∥∥2
2

6 τmax ← maxi,wi>0 τi
7 wi = wi(1− τi/τmax)

8 end
9 w̃ ← Π⊥

Vw
µw // orthogonal component

10 Pick Θ(1/α) points at random, {xi}Ti=1

11 Return {ΠV xi + w̃}Ti=1

We define the SIFT algorithm in Algorithm 1.
In Algorithm 1, we initialize the weights wi equally and then at each step,

downweigh the points that contribute the most to the top k components of Σw.
We do this until the k’th eigenvalue of Σw is still large, which allows us to bound
the error in V ⊥

w µ when we terminate. Notice that in τi we ’whiten’ the projected
distance to mean V ⊤

w (xi − µ) with (Σ
(k)
w )−1/2 to make sure components contribute

equally to the score. In Table 1, we compare this algorithm to the algorithm from
the previous lecture where we were only considering the top eigenvector while
eliminating outliers.

η < 1/2 (previous lecture) list decodable learning

Invariant on wi

∑
i∈clean

(
1
n
− wi

)
<
∑

i∈bad
(
1
n
− wi

) ∑
i∈clean wi ≥ α

√∑
i∈[n] wi

Termination cond. ∥Σw∥op ≲ 1 λk(Σw) ≲ 1√∑
i wi

, k = Θ(1/α)

Scores (τi) τi = ⟨u, xi − µw⟩2, u top eig.vec. τi =
∥∥∥(Σ(k)

w )−1/2V ⊤
w (xi − µw)

∥∥∥2
2

Condition on τi
∑

i∈clean wiτi <
1
2

∑
i∈all wiτi

∑
i∈clean wiτi∑
i∈clean wi

≤ 1
2

∑
i∈all wiτi∑
i∈all wi

Spectral Signature ∥µw − µ∥ ≲ √η(1 +∥Σw∥1/2op ) ∥µw − µ∥ ≲
√

1+
√∑

i wi∥Σw∥op
α

Table 1: Comparison of SIFT to Simple iterative filtering from previous lecture

Here, the condition on τi is the condition that has to hold for the invariant to
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be maintained. Notice that the termination condition now looks at the magnitude
of the k’th eigenvector instead of the operator norm. Similarly, we have that the
condition on τi is now normalized, by dividing by the sum of the weights.

4 Analysis of SIFT

Here, we analyse SIFT. The goal is to show that

1. When the algorithm terminates, the output is correct.

2. We maintain the invariant on wi given in Table 1 when the condition on τi
holds.

3. The condition on the τi holds when the algorithm is still running .

4. Prove the spectral signature lemma.

4.1 Termination condition implies output is correct

Recall that Vw has columns which are top-k eigenvectors of Σw. We initially prove
that if we hit the termination condition, we estimate Π⊥

Vw
µ to small error. Notice

that when we apply the spectral signature lemma to data projected to V ⊥
w , we get

∥∥∥Π⊥
Vw
µw − Π⊥

Vw
µ
∥∥∥ ≲

1√
α

√√√√1 +

√∑
i

wi

∥∥∥Π⊥
Vw
ΣwΠ⊥

Vw

∥∥∥
op

≤ 1√
α

√
1 +

√∑
wiλk(Σw)

≲
1√
α

√
1 +

√∑
wi/
√∑

wi ≲
1√
α

So, we have a O(1/α) dimensional subspace Vw and an O(1/
√
α)-accurate esti-

mate of Π⊥
Vw
µ. This is exactly the condition required to run our random selection

algorithm as described in Section 3.1.

4.2 Maintaining invariant given condition on τi

We show that if the condition on τi holds, ie∑
i∈clean wiτi∑
i∈clean wi

≤ 1

2

∑
i∈allwiτi∑
i∈allwi
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then, downweighting maintains the invariant on the wi, which is
∑

i∈clean wi ≥
α
√∑

i∈allwi. First, note that w′
i ← wi

(
1− τi

τmax

)
. Then, it will suffice to show that

∑
i∈clean w

′
i∑

i∈clean wi

≥

√∑
i∈allw

′
i∑

i∈allwi

This is because multiplying the cross terms tells us that the relative weight of the
clean terms has increased. Now, we have

∑
i∈clean w

′
i∑

i∈clean wi

=

∑
i∈clean wi

(
1− τi

τmax

)
∑

i∈clean wi

= 1− 1

τmax

·
∑

i∈clean wiτi∑
i∈clean wi

(a)

≥ 1− 1

τmax

· 1
2

∑
i∈allwiτi∑
i∈all wi

(b)
= 1− 1

2

(
1−

∑
i∈allw

′
i∑

i∈allwi

)
(c)

≥

√∑
i∈all w

′
i∑

i∈all wi

where (a) follows from the condition on τi, (b) follows from the definition of w′
i, and

(c) follows from the inequality 1− 1
2
x ≥
√
1− x when x < 1.2

4.3 Maintaining Condition on τi given we haven’t terminated

Now, we show that if we haven’t hit the termination condition, the condition on τi
holds. We want to show

1∑
i∈clean wi

∑
i∈clean

wiτi ≤
1

2

1∑
i∈allwi

∑
i∈all

wiτi (1)

We initially note that

τi =
∥∥∥(Σ(k)

w )−1/2V ⊤
w (xi − µw)

∥∥∥2
= Tr

(
(Σ(k)

w )−1/2V T
w (xi − µw)(xi − µ)⊤Vw(Σ

(k)
w )−1/2

)
(a)
= Tr

(
(Σ(k)

w )−1/2(Σ(k)
w )−1/2V T

w (xi − µw)(xi − µ)⊤Vw

)
= ⟨(Σ(k)

w )−1, V ⊤
w (xi − µw)(xi − µw)

⊤V )⟩
2We have (1 − x/2)2 = 1 − x + x2/4 ≥ 1 − x. Taking square roots of both sides gives desired

result.
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where we used the cyclic property of trace in (a), and we refer to the trace inner
product at the end. So,

1

2

1∑
i∈allwi

∑
i∈all

wiτi =
1

2

1∑
i∈allwi

∑
i∈all

⟨(Σ(k)
w )−1, V ⊤

w (xi − µw)(xi − µw)
⊤V )⟩

=
1

2
⟨(Σ(k)

w )−1, V ⊤
w ΣwVw⟩

=
1

2
⟨(Σ(k)

w )−1,Σ(k)
w ⟩ =

1

2
Tr(Idk) = k/2

which is the RHS of Eq. (1). Then, for the LHS, we initially do the following for
xi − µw xi −

1

|G|
∑

i∈clean

wixi

+

 1

|G|
∑

i∈clean

wixi − µw


With this motivation, let µw,g =

1∑
i∈clean

∑
i∈clean wixi and we define the ’good covari-

ance’

Σw,g ≜
1∑

i∈clean wi

∑
i∈clean

wi(xi − µw,g)(xi − µw,g)
⊤

So that

τi ≤ 2
∥∥∥(Σ(k)

w )−1/2V ⊤
w (xi − µw,g)

∥∥∥2 + 2
∥∥∥(Σ(k)

w )−1/2V ⊤
w (µw,g − µ)

∥∥∥2
= 2γi + 2δi (2)

where we used the inequality∥a+ b∥2 ≤ 2∥a∥2 +∥b∥2 and µw,g is the mean of the
good points. Then,

2∑
i∈clean wi

∑
i∈clean

wiγi = 2⟨(Σ(k)
w )−1, V ⊤

w Σw,gVw⟩

similar to before. Now, we note that Σw,g ⪯ 1∑
i∈clean wi

∑
i∈clean wi(xi − µ)(xi − µ)⊤

because Σw,g is the empirical covariance of the good points. Then, using wi ≤ 1/n ≤
α/|G|we get

Σw,g ⪯
1∑

i∈clean wi

∑
i∈clean

wi(xi − µ)(xi − µ)⊤

⪯ α∑
i∈clean wi

· 1

|G|
∑

i∈clean

(xi − µ)(xi − µ)⊤

(a)

⪯ α∑
i∈clean wi

· Id
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where we used Assumption 1 in (a). Then,

2⟨(Σ(k)
w )−1, V ⊤

w Σw,gVw⟩ ≤
2α∑

i∈clean wi

· Tr(Σ(k)
w )−1

Then, because the eigenvalues of Tr(Σ(k)
w )−1 are ≲

√∑
i∈all wi we have

2α∑
i∈clean wi

· Tr(Σ(k)
w )−1 ≲

2α
√∑

i∈all wi∑
i∈clean wi

· k ≤∗ k/4

where the last inequality can hold by choosing the constant in the termination
condition large enough. So, we have bounded the first term by k/4 and it suffices to
bound the second one by k/4 too. So,

2∑
i∈clean wi

∑
i∈clean

wiδi = 2
∥∥∥(Σ(k)

w )−1/2V ⊤
w (µw − µw,g)

∥∥∥2
2

Now, we note that E[x]E[x]⊤ ⪯ E[xx⊤] by Jensen. So,

(µw − µw,g)(µw − µw,g)
⊤ ⪯ 1∑

i∈clean wi

∑
i∈clean

wi(xi − µw)(xi − µw)
⊤

(a)

⪯ 1∑
i∈clean wi

∑
i∈all

wi(xi − µw)(xi − µw)
⊤

⪯
∑

i∈allwi∑
i∈clean wi

Σw

So,

2
∥∥∥(Σ(k)

w )−1/2V ⊤
w (µw − µw,g)

∥∥∥2
2
≤

2
∑

i∈allwi∑
i∈clean wi

≤ 2

√∑
i∈all wi

α
≤ 2

α
≤ k

4

by taking k ≥ 8/α since k = Θ(1/α). Therefore, in Eq. (2) we have bounded both
terms by k/4, bounding the LHS by k/2. Since in Eq. (1) the RHS was k/2, we have
the desired result.

4.4 Spectral Signature Lemma

Now, what remains to show to conclude the analysis of SIFT is the spectral signature
lemma. I.e.,

∥µw − µ∥ ≲ 1√
α

√
1 +

1√∑
i wi

∥Σw∥op
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To do this, we will show that both µw and µ are close to µ̂ where

µ̂ ≜
1

⟨w,w∗⟩
∑
i∈all

wiw
∗
i xi

where w∗
i ≜

1
|G| · 1[i ∈ G] is the indicator of the good points. Here, µ̂ is the averaging

of the good points under the weighting given by w. We want to do this because we
can relate the distance∥µ− µw∥ to∥µ− µ̂∥ and∥µw − µ̂∥.

Then, we start with∥µ̂− µ∥2. We have

∥µ̂− µ∥2 = sup
u∈Sd−1

⟨µ̂− µ, u⟩2

= sup
u∈Sd−1

⟨ 1

⟨w,w∗⟩
∑
i∈all

wiw
∗
i (xi − µ), u⟩2

(a)

≤ sup
u∈Sd−1

1

⟨w∗, w⟩
∑
i

wiw
∗
i ⟨xi − µ, u⟩2

≤ 1

n

1

⟨w∗, w⟩
sup

u∈Sd−1

∑
i

w∗
i ⟨xi − µ, u⟩2

(b)

≲
1

n⟨w,w∗⟩

where (a) follows from the convexity of f(x) = x2.3, and (b) follows from the
covariance bound on the good points, i.e. Assumption 1. Now, note that

⟨w,w∗⟩ = 1

|G|
∑

i∈clean

wi ≥
1

|G|
α

√∑
i∈all

wi (3)

from the invariant on the wi. We want to lower bound the sum of all wi. Therefore,
we use the invariant (lower bound on good wi) to get∑

i∈all

wi ≥
∑

i∈clean

wi ≥ α

√∑
i∈all

wi

So,
∑

i∈allwi ≥ α2. Then, combining with Eq. (3), we have

1

n⟨w,w∗⟩
≤ |G|

αn

1√∑
i∈allwi

≤ 1 · 1√
α2

= 1/α

Hence, we conclude that∥µ− µ̂∥ ≲ 1
α

.

3If f is convex and
∑

i ai = 1 with ai ≥ 0, then f(
∑

i aixi) ≤
∑

i aif(xi) This is by definition of
convexity.
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Now, we look at the distnace of weighted mean µw to the true mean µ,∥µw − µ̂∥.
Using a similar convexity inequality to the previous part, we have

∥µ̂− µw∥2 ≤ sup
u∈Sd−1

1

⟨w,w∗⟩
∑
i∈all

wiw
∗
i ⟨xi − µw, u⟩2

(a)

≤ sup
u∈Sd−1

1

⟨w,w∗⟩
1

|G|

∑
i∈all

wi

 1∑
i∈allwi

∑
i∈all

wi⟨xi − µw, u⟩2

=

∑
i∈allwi

⟨w,w∗⟩|G|
sup

u∈Sd−1

u⊤Σwu

=

∑
i∈allwi

⟨w,w∗⟩|G|
∥Σw∥op

where (a) follows from w∗
i ≤ 1

|G| . Then, using the bound for ⟨w,w∗⟩ from Eq. (3), we
have ∑

i∈allwi

⟨w,w∗⟩|G|
∥Σw∥op ≤

|G|
∑

i∈allwi

|G|α
√∑

i∈allwi

∥Σw∥op =
1

α

√∑
i∈all

wi∥Σw∥op

Combining this with the bound of∥µ− µ̂∥, we get

∥µ− µw∥2 ≤ 2∥µ̂− µ∥2 + 2
∥∥µ̂− µ2

w

∥∥ ≲
1

α

1 +

√∑
i∈all

wi∥Σw∥op


as desired.

References

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from
untrusted data. In Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 47–60, 2017.

[DKK+21] Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, and Kevin
Tian. List-decodable mean estimation in nearly-pca time. Advances in
Neural Information Processing Systems, 34:10195–10208, 2021.

10


	Motivation
	Setup
	Algorithm
	Finding subspace V close to true mean suffices
	Finding subspace V with iterative filtering

	Analysis of SIFT
	Termination condition implies output is correct
	Maintaining invariant given condition on i
	Maintaining Condition on i given we haven't terminated
	Spectral Signature Lemma


