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The following is an exposition of the basic guarantees of the SIFT (Subspace Isotropic FilTer-
ing) algorithm from [DKK+21] for list-decodable mean estimation for bounded-covariance distri-
butions. This writeup has not been proofread carefully and is only meant to serve as supplemental
notes for Lecture 10 of CS 224.

1 Setup and notation

There is a distribution q with mean µ∗ ∈ Rd and covariance Σ ⪯ 1. Let α > 0 be a small parameter
corresponding to the fraction of inliers. We are given samples {Xi}i∈T , such that an α fraction of
them are i.i.d. draws from q, and the rest are arbitrary. Our goal is to output a list of estimates
µ̂1, . . . , µ̂m for m = O(1/α) such that one of them is guaranteed to satisfy ∥µ̂i − µ∗∥ ≲ 1/

√
α.

Let ∆T denote the solid probability simplex, i.e. the set of weights {wi}i∈T for which wi ≥ 0
and

∑
iwi ≤ 1.

Given weights w ∈ ∆T and a subset T ′ ⊆ T , define the weighted mean and covariance by

µw(T
′) ≜

1

∥wT ′∥1

∑
i∈T ′

wiXi and Σw(T
′) ≜

1

∥wT ′∥1

∑
i∈T ′

wi(Xi − µw(T
′))(Xi − µw(T

′))⊺ .

The only property we need about the dataset is that there exists a subset of points G for which,
for weights w∗ given by

w∗
i ≜

1

|G|
· 1[i ∈ G] ,

we have ∑
i

w∗
i (Xi − µ∗)(Xi − µ∗)⊺ ⪯ 1 . (1)

To give intuition for this, note that if G were simply all uncorrupted points, then the left-hand side
is just the empirical covariance of the uncorrupted points, and intuitively this should concentrates
around the true covariance of q, which is bounded by 1. Unfortunately, this is not quite true
because we are making a weak assumption on the tails of q. A classical result of Rudelson [Rud99]
shows that the empirical covariance has operator norm bounded by that of the true covariance up
to a log(n) factor, but recall that our goal is to obtain dimension-independent bounds.

Instead, it is proven in [CSV17] using tools from spectral sparsification that one can carefully
sub-sample the set of uncorrupted points in order to produce G satisfying Eq. (1). Proving this will
take us a bit further afield from the key ideas on list-decodable learning, so we refer the interested
reader to Proposition 1.1 in [CSV17].
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2 Safe scores and saturated weights

Definition 2.1. A set of scores {τi}i∈T is safe with respect to a set of weights w ∈ ∆T if

1

∥wG∥1

∑
i∈G

wiτi ≤
1

2∥w∥1

∑
i∈T

wiτi . (2)

Definition 2.2. A set of weights w ∈ ∆T is saturated if wi ≤ 1/n for all i and

∥wG∥1 ≥ α
√
∥w∥1 .

Note that the set of uniform weights wi = 1
n is saturated by assumption. We also record the

following basic implication of saturation, namely that the total weight cannot be too small.

Fact 2.3. If w is saturated, then ∥w∥1 ≥ α2.

Proof. This follows from rearranging the following:

∥w∥1 ≥ ∥wG∥1 ≥ α
√
∥w∥1 .

The next lemma shows that the downweighting rule we used in the previous lecture maintains
the invariant that the weights are saturated, provided that the scores used are safe.

Lemma 2.4. If {τi} are safe with respect to a set of saturated weights w, then the weights given by down-
weighting, that is,

w′
i ≜

(
1− τi

τmax

)
wi where τmax ≜ max

i∈T :wi ̸=0
τi ,

are also saturated.

Proof. Note that it suffices to show that

∥w′
G∥1

∥wG∥1
≥

√
∥w′∥1
∥w∥1

. (3)

We can rewrite the left-hand side of Eq. (3) as

∥w′
G∥1

∥wG∥1
= 1− 1

∥wG∥1

∑
i∈G

(wi − w′
i)

= 1− 1

∥wG∥1

∑
i∈G

wiτi
τmax

≥ 1− 1

2∥w∥1

∑
i∈T

wiτi
τmax

= 1− 1

2

∥w′∥1
∥w∥1

,

where the second step follows by the definition of the downweighting update, and the inequality
follows by the assumption that τ ’s are safe. Finally, note that 1 − x/2 ≥

√
1− x for all 0 ≤ x ≤ 1,

so Eq. (3) follows.
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3 Finding a 1/α-dimensional subspace suffices

First note that if we could somehow produce a subspace V of dimension

k = O(1/α)

which is very close to the true mean µ∗ of the good points, then the following simple algorithm
works. Let Π denote the projection to V . Then select Ω(1/α) random points from T and project
them to V . With high probability one of the points x is from G, and with high probability Πx will
be O(

√
α)-close to Πµ∗ (and thus to µ∗) by the following basic fact:

Fact 3.1. Let q be a distribution over Rk with mean µ and covariance Σ ⪯ 1. Then for x ∼ q, ∥x−µ∥ ≲
√
k

with probability at least 4/5.

Proof. E ∥x− µ∥2 = Tr(Σ) ≤ k, so by Markov’s, P[∥x− µ∥2 ≥ 5k] ≤ 1/5, and the fact follows.

Why is it reasonable to hope for the existence of such a subspace? We know that information-
theoretically, list-decodable mean estimation is possible, so at the very least there is a compu-
tationally inefficient algorithm that outputs a list of O(1/α) candidate means, one of which is
guaranteed to be O(

√
α)-close to µ∗. We can simply take V to be the span of the these candidate

means, and then µ∗ would certainly be close to V .
The whole challenge is thus to find V with an efficient algorithm. In fact, this is overkill: if

we had an efficient algorithm for producing an O(1/α)-dimensional subspace V and an accurate
estimate for Π⊥µ∗, where Π⊥ is the projector to the orthogonal complement of V , this would also
suffice.

This suggests a natural termination condition for the filtering algorithm we will consider:
check whether the current weighted covariance matrix has small k-th eigenvalue. Formally, we
will terminate as soon as

λk(Σw(T )) ≤ ζ ,

where ζ will be a threshold to be tuned later (we will eventually set ζ ≍ 1/
√
∥w∥1).

Intuitively, the point at which this happens will correspond to the point at which we have suc-
cessfully learned µ∗ in all of the directions orthogonal to the top-k eigenspace Vw of the weighted
covariance Σw(T ), at which point we can apply the trivial random sampling algorithm above to
learn Πµ∗.

Here we verify that if we hit the termination condition and w is saturated, then the current
weighted mean is O(1/

√
α)-close to µ∗ in the directions orthogonal to V , which is sufficient for

our purposes:

Lemma 3.2. If w ∈ ∆T is saturated, then

∥µw(T )− µ∗∥ ≲

√√
∥w∥1
α

∥Σw(T )∥op +
1

α
. (4)

To see why this implies what we want, we apply the above lemma to the dataset projected via
Π⊥ to the orthogonal complement of the top-k eigenspace of Σw(T ). Then the ∥Σw(T )∥op term is
simply the (k + 1)-st eigenvalue of Σw(T ), which is at most ζ by the termination condition. If we
take ζ ≍ 1/

√
∥w∥1, then the right-hand side of Eq. (4) is O(

√
1/α) as desired.
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Proof of Lemma 3.2. Let w∗ ∈ ∆T be given by w∗
i ≜ 1/|G| · 1[i ∈ G] so that

∑
i∈T w∗

iXi = µ∗.
We will bound the distance from both µw(T ) and µ∗ to the following point:

µ̂ ≜
1

⟨w,w∗⟩
∑
i∈T

wiw
∗
iXi

The intuition for µ̂ is that it is the weighted mean of the dataset where the weights are given by
taking w and “tilting” them in the direction of the true weights w∗.

Writing ∥µ̂− µ∗∥2 = supu∈Sd−1⟨µ̂− µ∗⟩2, we have

sup
u

⟨µ̂− µ∗⟩2 = sup
u

〈∑
i∈T

wiw
∗
i

⟨w,w∗⟩
(Xi − µ∗), u

〉2

≤ sup
u

∑
i∈T

wiw
∗
i

⟨w,w∗⟩
⟨Xi − µ∗, u⟩2

≤ 1

n⟨w,w∗⟩
sup
u

∑
i∈T

w∗
i ⟨Xi − µ∗, u⟩2

≤ 1

n⟨w,w∗⟩
=

α

∥wG∥1
≤ 1√

∥w∥1
≤ 1

α
.

where in the second step we used Jensen’s inequality, in the third step we used that wi ≤ 1/n, in
the fourth step we used Eq. (1), in the fifth step we used that ⟨w,w∗⟩ = 1

|G|
∑

i∈Gwi =
∥wg∥1
αn , and

in the last two steps we used saturation of w.
Similarly, writing ∥µ̂− µw(T )∥2 = supu⟨µ̂− µw(T )⟩2, we have

sup
u

⟨µ̂− µw(T )⟩2 = sup
u

〈∑
i∈T

wiw
∗
i

⟨w,w∗⟩
(Xi − µw(T )), u

〉2

≤ sup
u

∑
i∈T

wiw
∗
i

⟨w,w∗⟩
⟨Xi − µw(T ), u⟩2

=
∥w∥1

|G| · ⟨w,w∗⟩
sup
u

∑
i∈T

wi

∥w∥1
⟨Xi − µw(T ), u⟩2

=
∥w∥1
∥wG∥

∥Σw(T )∥op ≤
√
∥w∥1
α

∥Σw(T )∥op ,

where in the second step we used Jensen’s inequality, in the third step we used the definition of
w∗, in the fourth step we used the definition of Σw(T ), and in the last step we used saturation.

4 Safety maintained before termination

Finally, it remains to prove that prior to termination, there is an appropriate scoring rule which is
safe and thus maintains the saturation invariant by Lemma 2.4.

One natural attempt at scoring points would be their distance to the weighted mean in the
top-k eigenspace Vw of the current weighted covariance Σw(T ). We will abuse notation and let
Vw also denote a d × k matrix whose columns are a basis for Vw. The motivation for this choice
of score is its compatibility with the quantity λk(Σw(T )) in the termination condition: the sum of
squares of scores is ∑

i

∥V ⊺
w (Xi − µw(T ))

2∥ = V ⊺
wΣw(T )Vw ,
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i.e. the sum of squares of the top-k eigenvalues of the weighted covariance (the squared “Ky-fan
k-norm”). Points for which this is large get progressively downweighted, so that eventually the
top-k eigenvalues of the weighted covariance are sufficiently small that we hit the termination
condition.

This is however not quite the right scoring rule, because the k large eigendirections need not
be of equal magnitude, so points that deviate from µw(T ) in certain directions within Vw get more
severely penalized than points that deviate in other directions. To place all k directions on level
playing field, we tweak the above score by “whitening” Vw. Let Σ(k)

w ≜ V ⊺
wΣw(T )V and define the

scores for a particular set of weights w to be

τi ≜
∥∥(Σ(k)

w )−1/2V ⊺
w (Xi − µw(T ))

∥∥2 .
The effect of the (Σ

(k)
w )−1/2 term is simply to transform the projected data to be isotropic, i.e. so

that the weighted k-dimensional covariance becomes 1k

Our analysis is complete upon proving the following:

Lemma 4.1. If λk(Σw(T )) ≥ 8/
√
∥w∥1 and k ≥ 8/α, then the scores {τi} are safe with respect to w.

Proof. Because the projected data is isotropic after being transformed by (Σ
(k)
w )−1/2, the right-hand

side of Eq. (2) in the definition of safety turns out to be exactly k/2:

1

2∥w∥1

∑
i∈T

wiτi =
1

2

〈
(Σ(k)

w )−1, V ⊺
w

( 1

∥w∥1

∑
i∈T

(Xi − µw(T ))(Xi − µw(T ))
⊺
)
Vw

〉
=

1

2
⟨(Σ(k)

w )−1,Σ(k)
w ⟩ = k/2 .

For the left-hand side of Eq. (2), we can first split up Xi−µw(T ) into Xi−µw(G) and µw(G)−µw(T )
and thus decompose

τi ≤ 2
∥∥(Σ(k)

w )−1/2V ⊺
w (Xi − µw(G))

∥∥2 + 2
∥∥(Σ(k)

w )−1/2V ⊺
w (µw(G)− µw(T ))

∥∥2 . (5)

The contribution of the former term for each i to 1
∥wG∥1

∑
i∈Gwiτi is

1

∥wG∥1

∑
i∈G

wi · 2
∥∥(Σ(k)

w )−1/2V ⊺
w (Xi − µw(G))

∥∥2
=

2

∥wG∥1

∑
i∈G

wi

∥∥(Σ(k)
w )−1/2V ⊺

w (Xi − µw(G))
∥∥2

= 2⟨(Σ(k)
w )−1, V ⊺

wΣw(G)Vw⟩

≤ 2α

∥wG∥1
· Tr((Σ(k)

w )−1)

≤
2kα

√
∥w∥1

8∥wG∥1
≤ k/4 ,

where in the first inequality we used Lemma 4.2 below and in the last step we used the fact that
λk(Σw(T )) ≥ 8/

√
∥w∥1.
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The contribution of the latter term in Eq. (5) to 1
∥wG∥1

∑
i∈Gwiτi is

1

∥wG∥1

∑
i∈G

wi · 2
∥∥(Σ(k)

w )−1/2V ⊺
w (µw(G)− µw(T ))

∥∥2
=

2

∥wG∥1

∑
i∈G

wi

∥∥(Σ(k)
w )−1/2V ⊺

w (Xi − µw(G))
∥∥2

= 2⟨(Σ(k)
w )−1, V ⊺

w (µw(G)− µw(T ))(µw(G)− µw(T ))
⊺Vw⟩

≤ 2∥w∥1
∥wG∥1

≤
2
√

∥w∥1
α

≤ 2

α
,

where in the first inequality we used Lemma 4.3 below.
We conclude that

1

∥wG∥1

∑
i∈G

wiτi ≤ k/4 +
2

α
≤ k/2

as desired, where in the last step we used the assumption that k ≥ 8/α.

Lemma 4.2. If w ∈ ∆T satisfies wi ≤ 1/n for all i, then Σw(G) ⪯ α
∥wG∥11.

Proof. Let w∗ ∈ ∆T be given by w∗
i ≜ 1/|G| · 1[i ∈ G]. Note that by assumption, wi ≤ αw∗

i .
Furthermore, ∑

i∈G
wi(Xi − µw(G))(Xi − µw(G))⊺ ⪯

∑
i∈G

wi(Xi − µ′)(Xi − µ′)⊺

for any vector µ′ ∈ Rd (i.e. to minimize the variance of a distribution, one should center it around
its mean and not around any other point µ’).

We thus have

Σw(G) ⪯ 1

∥wG∥1

∑
i∈G

wi(Xi − µ∗)(Xi − µ∗) ⪯ α

∥wG∥1

∑
i∈G

w∗
i (Xi − µ∗)(Xi − µ∗) ⪯ α

∥wG∥1
1 ,

where in the last step we used Eq. (1).

Lemma 4.3. For any w ∈ ∆T , we have

(µw(G)− µw(T ))(µw(G)− µw(T ))
⊺ ⪯ ∥w∥1

∥wG∥1
Σw(T ) .

Proof. For any distribution over vector x, we have E[x]E[x]⊺ ⪯ E[xx⊺]. By applying this to the
distribution which samples x by selecting i ∈ G with probability wi/∥w∥1 and outputting x =
Xi − µw(T ), we conclude that

(µw(G)− µw(T ))(µw(G)− µw(T ))
⊺ ⪯ 1

∥wG∥1

∑
i∈G

wi(Xi − µw(T ))(Xi − µw(T ))
⊺ .
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We can bound the right-hand side by a sum over T and rewrite 1/∥wG∥1 by ∥w∥1
∥wG∥1 · 1

∥w∥1 to get

⪯ ∥w∥1
∥wG∥1

1

∥w∥1

∑
i∈T

wi(Xi − µw(T ))(Xi − µw(T ))
⊺

=
∥w∥1
∥wG∥1

Σw(T )

as claimed.
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