Lecture 20: Belief propagation:
Def: (Undirected) graphical model $w /$ pairwise interactions:
Let $\left\{\Psi_{i j}\right\}_{(i, j) \in F}$ be compatibility functions $\{ \pm 1\}^{2} \rightarrow \mathbb{R}_{\geq 0}$ that dictate interactions blt particles
The Gibbs measure is dist over $\{ \pm 1\}^{n}$ given by
where Z is the partition function, i.e. normalizing constant.
We will use the shorthand

$$
M \propto \prod_{(i, j)} \Psi_{i j}\left(x_{i}, x_{j}\right)
$$

Example (using model"):

$$
\begin{aligned}
& \text { Using model } \Psi_{i j}\left(x_{i}, x_{j}\right)=\exp \left(-\beta A_{i j} x_{i} x_{j}\right) \text {, so } \\
& \mu(x) \propto \exp (-\frac{\beta}{2} \underbrace{\underbrace{\top} A}_{\text {energy }} x)
\end{aligned}
$$

for $A \in \mathbb{R}^{n \times n}$ a symmetric matrix with zero diagonal
β : "inverse temperature"
A: "Hamiltonian"/ "interaction matrix"

$$
\varepsilon(x) \triangleq \frac{\beta}{2} x^{\top} A x=-\lg \left(\prod_{(i, j) \in f} \Psi_{i, j}\left(x_{i}, x_{j}\right)\right): \text { "energy" }
$$

As $\beta \rightarrow 0, \mu \rightarrow \operatorname{Unif}\left(\{ \pm 1\}^{n}\right)$

$$
\beta \rightarrow \infty, \quad \mu \rightarrow U_{\text {nit }}(\{\text { energy minimizes }\})
$$

Can think of A as adjacency matrix of weighted graph. Denote this by G.

$$
\partial_{i} \triangleq\left\{j \text { set. } A_{i j} \neq 0\right\}=\{j \text { st. }(i, j) \in F\}
$$

ie. the neighbors of node i in G Markov property :

If $[n] \backslash S$ decomposes into disjoint pieces, then marginal distributions on the pieces are independent, conditioned on any assignment To the spins on S
e.g. if we condition on $x_{d_{i}}$, then condifinant dist. on x_{i} is indepartey of conditional dist on rest of the spins. For Using model:

$$
\mathbb{P} r\left[x_{i}=\sigma \mid x_{\partial_{i}}=s\right] \sigma \exp \left(2 \beta \sum_{j \in j_{i}} A_{i j} s_{j} \sigma\right)
$$

* negative sign is bl of inconvenient culture clash blt physics and CS: physicists wart to minimize energy, in CS we wart to maximize $x^{\top} \beta x$, e.g. in MAXCUT

2 fundamental algorithmic tasks in inference:
(1) computing the partition function Z
(2) Sampling from Gibbs mearnue μ

Note alg. for (1) \Rightarrow alg. For (2) and vice verso ("equivalence of counting + sampling")
Challenge: Z is sum of exponentially many terms, so in many cases we expect it is computationally hard to compute...
e.g. if $\psi_{i j}\left(x_{i}, x_{j}\right)=\mathbb{1}\left[x_{i} \neq x_{j}\right]$ for all $(i, j) \in E(6)$,
$z=\#$ independent sets of G ("\# P-complete", i.e. very hard)

So our gook will be to approximate Z/approximately from Gibbs measure μ

This Some approaches:
wit - Markov chain Monte Carlo (MCMC)
*-Variational inference (VI)

- Diffusion models (very recent, mare on this at the end of the course)

VI: approximate μ by dist. from family ρ of "simpler" distributions that are easy to sample from (eeg. product distributions, aka mean-field!):

$$
\begin{equation*}
\min _{\nu \in p} K L(\nu \| \mu) \tag{b}
\end{equation*}
$$

Note: - if P is all distributions, minimizes is $\nu^{A}=\mu$ (Gibbs' inequality)

- "opposite" of SoS relaxation

An issue: cant even evaluate the dojective function in ((1), let alone optimize!

Fortunately, this particular issue is not really an issue:

$$
\begin{aligned}
& K L\left(\nu \|_{\mu}\right)=\mathbb{E}_{\nu} \ln \frac{\nu}{\mu} \\
& G[\nu] \triangleq-H(\nu)+\underset{\nu}{\mathbb{E}}[\varepsilon]=\underset{\nu}{\mathbb{E}} \ln \frac{\nu}{e^{-\varepsilon} / z} \\
& \text { free energy of } \\
& \text { the Gibbs measure }
\end{aligned}
$$

so to minimize $K L(\nu \| m)$, suffices to minimises $G[\nu]$ which is easy to evaluate

Interpretation of G as "regularized energy": for $I_{\text {sing }}$ model, recall $\varepsilon(x)=\frac{\beta}{2} x^{\top} A x$, so

$$
G[\nu]=\frac{\beta}{2} x^{\top} A x-\underbrace{H(\nu)}_{\substack{\text { "entropy } \\ \text { regularization" }}}
$$

When " β sot" small, minimizer priontizes maximizing entropy β big, minimizes prioritizes minimizing avg. energy "cold"
$G[\nu]$ efficiently computable, but computationally intractable to optimize a prosi...

Rest of lecture: powerful heuristic, belief propagation (BP), for solving $\underset{\nu}{\min } G[\nu]$.
2 interpretations of the heuristic:
(1) dynamics programming
(2) finding stationary points of a relaxation of the Gibbs free energy (Bethe free energy) (see supplemental notes)
BP as dynamic programming:
Let's fist shift fans to easier task than full-blown VI: marginal estimation dist. μ_{i} over each node is a Bernoulli random variable, goal is to estimate it Physics motivation:
physicists care about limiting objects, and one important that they consider as $n \rightarrow \infty$ is the empirical dist. Over marginals, ie.

$$
q_{n}(z) \cong \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left[z=\mu_{i}\right]
$$

and, given a sequence of Gibbs measures $\left(\mu^{(n)}\right)$, wast to undertone $\lim _{n \rightarrow \infty} q_{n}$
To motivate the algorithm, assume G is a tree
Note:

$V_{j \rightarrow i}$ removing (i, j) from tree

$$
V_{i}>j
$$ splits G into two subtrees

$$
\begin{aligned}
& \text { il } \bar{V}_{i \rightarrow j}\left(V_{j \rightarrow i}+\text { edge }(i, j)\right) \\
& \sum_{j}^{j}: \bar{V}_{j \rightarrow i}\left(V_{i \rightarrow j}+\text { edge }(i, j)\right)
\end{aligned}
$$

To sample from μ_{i},
1). Sample spins on subtrees $V_{j \rightarrow i}$ for $j \in d_{i}$, yields assignment $s \in\{ \pm 1\}^{\partial i}$ to d_{i}
2). Sample from conditional dist. on x_{i}, i.e.

$$
\operatorname{Pr}\left[x_{i}=\sigma \mid x_{\partial_{i}}=5\right] \sigma \prod_{j \in \partial_{i}} \psi_{i j}\left(\sigma, s_{j}\right)
$$

By law of total probability,

$$
\begin{aligned}
& \text { proportional to } \operatorname{mr}_{\bar{v}_{j \rightarrow i}}\left[x_{i}=\sigma\right]
\end{aligned}
$$

(i.e. Can express mazinats of μ_{-} teas of margins of $\left.\mu_{v_{j \rightarrow i}}\right)$
Unsatistiving bc wive gone from $\operatorname{P}_{\mu}\left[x_{i}=\sigma\right]$ to $\mathbb{P}_{\mu_{V}}\left[x_{i}=\sigma\right]$, but we're very close.

Define messages:

$$
\begin{aligned}
& m_{\sigma}^{(j) \rightarrow i} \triangleq \operatorname{P}_{\mu_{V}}\left(x_{j}=\sigma\right) \\
& \bar{m}_{\sigma}^{j * i} \triangleq \operatorname{PP}_{\bar{V}_{j \rightarrow i}}\left(x_{i}=\sigma\right)
\end{aligned}
$$

Then ($\Delta 80^{\circ}$) can be written as
(I) $\quad \bar{M}_{\sigma}^{j \rightarrow i} \propto \sum_{s \in\{ \pm 1\}} m_{s}^{(1) \rightarrow i} \cdot \psi_{i j}(\sigma, s)$

Also note that ($\left(\alpha_{0} \dot{\theta}\right)$ can be modified to apply to $\mu_{V_{i a k}}$ instead of μ_{1} i.e.

previously, (604) gave

$$
\operatorname{Pr}_{\mu}\left[x_{i}=\sigma\right] \propto \prod_{j \in \partial_{i}} \bar{m}_{\sigma}^{j \rightarrow(i)}
$$

after removing edge (i,k), we get
(II) $\quad \begin{array}{ll}m_{\sigma}^{(i) \rightarrow k} & \propto \prod_{j \sigma_{i} i k}^{\bar{m}_{\sigma}^{j j(i)}}\end{array}$

$$
\left(=\operatorname{Pr}_{M_{V}\left[x_{i}=\sigma\right]}\right)
$$

we can then wite manginds succinctly in teas of the messages:

$$
(\Leftrightarrow \theta \theta \theta) \quad \operatorname{Pr}\left[x_{i}=\sigma\right]=M_{\sigma}^{0-j} m_{\sigma}^{j j i}
$$

Combining (I) and (II) yields:

$$
(r e c) m_{\sigma}^{(i) \rightarrow k} \propto \prod_{j \in d_{i} k} \sum_{s \in\{t 1)} m_{s}^{(i) \rightarrow i} \cdot \Psi_{i j}(\sigma, s)
$$

βP on trees:
1). Pick arbitrary root vertex
2). For every leaf j and parent i, initialize $m_{\sigma}^{j \rightarrow i}=1 / 2 \quad \forall \sigma \in\{ \pm 1\}$
3). Use (rec) to compute \bar{m} 's via dynamic programming, starting from leaves
4). Use (1) to compute m 's
5) Use $(t 60)$ to compute marginals

What if G is not a tree? Then subtree maginals $\left\{\mu_{v^{j \rightarrow i}}\right\}_{j \in \partial_{i}}$ are not independent...
Nevertheless, can still run the above afuosithm and hope it gives something interesting!

* As stated, the algorithm is stated w/ a tree structure in mind. without this, we can still app update rules for \bar{m} and m in parallel
over many rounds.
Intuition for why this is a good ilea: if the graph is a random sparse graph, then locally if looks like a tree

If every edge appears w.p. $\frac{c}{n}$ for $c=O(1)$, "then probability that some "descendant" at depth \& "rectums" to ancestor i is

$$
1-\left(1-\frac{1}{n}\right)^{c^{d}}
$$

So as lung as $c^{d} \ll n$, this is $o(1)$.
Next lecture we will a natural setting whee such a sparse random graph arises.

Even insuch cares, βP is notoriandy hard to anclyze. We will instead see 2 rigorans alg's ingpired by $B P$:
1). Spectarl methods on nonbacktracking operators
2). approximate message passing.

