
11/15
ture20 : Belief propagation :

Def : (Undirected) graphical model w/ pairwise interactions :

Let &Yij(j) e F be Impatibilityfunctions &E13"=R20
that dictate interactions b/ particles

ThePumeasure is did. Over 5t130 given by

Merlijki , zeni"Spins"
where Z is the Portionfunction , i.e . normalizing
constant .

We will use the shorthand

M & T Y.jki ,xi)

Example(Ising Model") :

Pij(xi ,xj) = exp(Aiji) , so
M(t)dexp)- x

+

Ax)-
2) 71

energy

for AER
-

a symmetric matrix with zero diagonal

B : "inverse temperature"
A : "Hamiltonian"/ "interactionmatrix"

ExAx=-g(TefYiki) : "energy"



As B + 0 , m-Unif(13Y
BSD

,
Me Unif(energy minimizers3)

Can think of A as adjacency matrix of weighted

graph* Denote this by G.

bi[j st Aij + 03 = Ej St. (ii)F] ,

-theneighbors of code : in 6

Markov property :

-

⑭
& [n] /S decomposes into disjoint pieces ,

ther marginal distributions on the pieces
are independent , conditioned on any assignment-

to the spins on S

e .g. if we condition or Epi ,
then conditional

dist. on Xi is independent of conditional distor

rest of the spirs. For Ising model:

IPr[Xi= 0 ( Xoi = 5)<exp(2A :sid
* negative sign is bk of inconvenient culture clash b/t physics
and CS : physicists want to minimize energy , in CS
we want toMaximize XTBX , e . g . in MAXCUT



2 fundamental algorithmic tasks in inference :

& computing the partition function
② sampling from Gibbs measure M

Note aly. for # alg . for & and vice verso

& " equivalence of counting + sampling")
&hallenge: Z is sur of exponentially eary terms , so
in many cases we expect it is computationally had to
compute --

2.3 . if Yij(xi ·xj) = 1(X : # Xj) for all (ii) E(6),
z = # independent sets of G #P-complete" ,

i . e. very hard)

S our goal will be to approximate /approximately
From Gibbs measure fr

This Some approaches :
mit-Markov Chain Monte Carl (MCMC)
↓

* - Variational inference (VI)
- Diffusion models (very recent

,
more on this at the

end of the course)



VE : approximate me by dist. from family p

of "simpler" distributions that are easy

to sample for Ce . g. product distributions,
aka mean-field ! ) :

min KL(r11m) (4)
rep

Note : - if P is All distributions , minimizer is REM
(Gibbs' inequality)
- "opposite" of SoS reluxation

pseudodistributions

⑫
An issue : can't ever evaluate the objective function

in (* ) , let alone optimize !



Fortunately , this particular issue is

not really an issue :

KL(rIlm) = # In t
↓

G(r] = -H(r) + q(E] =z
free energy of
the Gibbs measure
-

"Gibbs free energy
= Glor + #E - In(z)~
un wi independent

- I *7 z approximate

functional" / negative average o r !
entropy energy

um

"evidence lower - H(r) easy to

bound" (ELBO) ifa simple ,
easy to evaluate

so to minimize KL(r/Im) , suffices to minimize

6)r] which is easy to evaluate

I

Interpretative of G as "regularized energy :

for Ising model , recall E-BTAx
,

so

6) (r)= E Ax
regularization"



"hot"
When & small , minimizer prioritizes maximizing entropy

& big , minimizer prioritizes minimizing aug. energy
"cold"

G) r] Officiently computable, but computationally
intectable to optimize a priori...

Rest of Lecture : powerful heuristic , belief
propagation (BP), for solving min G(r) .
-

2 interpretations of the heuristic:

① dynamic programming

& finding stationary points of a relaxation

of the Gibbs free energy (Bethe free energy)
(see supplemental notes)
-

BP as dynamic programming :
-

Let's fiet shift focus to easier task than full-blown
VI : marginal estimation dist. M ; over each mode
-

is a Bernoulli random variable , you is to estimate it

Physics motivation :-
physicists care about limiting objects , and one
important that they consider as 170 is the

empirical dist . Over marginals , i .e.



& (2): #[2 = Mil
and

, given a sequence of Gibbs measures

(M()
,

want to underland Ino In
To motivate the algorithm ,

assure S is a tree

Note :i Viti removing (i ,j) from tree

j Splits S into two subtrees

Viti-X-

· Fizj (Vjei+edge (ii)

* Tjz ; (Viej + edge (i ,j))

To sample from Mi ,

1)
. Sample spins on subtrees Vjei for jebi,
yields assignment Selli to Gi

2) sample from conditional dist
.

On 4;, i . e
.

1Pr(Xi = + (+ =5) Pij(s)



By law of total probability ,

(b) Pr[Xi=) To Pr(s) Tijks)S =#[ IPr(Xj = s)Yij,si
bla
X jedi SjEEB MVjti
-

marginal
-

Spins
dists u Vjei

Sare independent ↳across j's ( b)

proportional to IPr[X : = 1)
Mjzi

(i
.

e. can express magicals of Mijei in
tems of marginals of Mujsi)

Unsatisfying bk we've gone from

Pai =& to Pr (xi=0]
,
but

MJjzi
we're very close.



Define Messages :

D+ i
= (Pr(xj = c)Mo

NVjzi

=>
jD =Pr(xi =0]
&

Mjzi
Then (&&D can be written as

⑪ -
D
& [mi · 4,

(0, 5)
&

St(tl]

Also note that (**) can be modified to

apply to MVizk instead ofM ,
i . e.

& !-
S

9 -

Y



previously , (60s) gave

IPr(i=)aT
after removing edge (isk) , we get

jti(
m

&+ Ima
&

⑪ mo jeti)k

(= It
we can then write marginals succinctly
in tems of the messages :

(6) (= =mi

Combining & and yields :

(rec) MOth Sm* Y()①



BP on trees :

1) Pick arbitrary root vertex

2) For every leaf j and parent is
- lizeinition mjti = 1/2 V - [t13

3) Use (rea) to compute

m's via dynamic programming,

starting from leaves

4) Use I to compute m's

5) Use (6060) to compute marginals

What ifS is not a tree ? Then

subtree magicals [Mpiz : ]jed :
are not independentt ..

Nevertheless
,
can still run the above

↳

algorithme and hope it gives something interesting !

-

& As stated
,
the algorithm is stated my a tree

-structure in mind
.

Without this , we can still

apply update rules for m and m in parallel



-many rounds .

Intuition for why this is a good idea :

if the graph is a random
sparse graph,

thenLeally it looks like a tree

· G
i

If every edge appears w.p. I for c=0(1),

them probability that some "descendent" at depth &
, I

returns" to ancestor i is

d
I- (1 - t)

so as long as a 1
,
this is (1)

.

Next lecture we will see a natural setting where
such a sparse rander graph arises.



Even in such cases
, BP ismotoriously hard

to analyze. We will instead see 2

rigorous cy's inspired by BP :
-

hods1). Spectral metin
nonbacktracking operator

2
. approximate message passing.


