11/13/23 Lecture 19: Cryptography + Learning () Hardness of LPN -> Hardness of agnostically learning halfspaces 3 Daniely-Vard: lifting: Crypto hardness for learning MLP's. (1) Recall agnostic learning: for function class C, Given: $(x_1, y_1), \dots, (x_n, y_n) \sim D$ over $\mathbb{R}^d \times \{\pm 1\}$ Good: output fe \in st. $\underbrace{\mathbb{E}\left[f(x) \neq y\right] \leq \min_{f^{e} \in C} \underbrace{\mathbb{E}\left[f(x) \neq y\right]}_{f^{e} \in C} \underbrace{\mathbb{E}\left[f(x) \neq y\right]}_{f^{e} \in C}$ When $D_x = Unif(\{0, 1\}^d)$ and C is {hulfspaces}, how hard is this task? [Kalai-Klivans-Mansour-Nisan '06]: A) Halfsporces approx'd by deg poly(1/E) polynomials, so can learn in time andy(1/E). B) This is qualifatively tight, assuming hardness of LPN

pfgB):Given JS(d) of even size, note that $M_{a;5}(X) = \begin{cases} 1 & \text{if } \sum_{i \in S} X_i \ge \frac{|S|}{2} \\ -| & 0 & \cdots \end{cases}$ agrees with parity $(x) = \begin{cases} l & if \in X_1 \\ i \in S_2 \\ l & i \in S_2 \end{cases}$ even wip $\approx \frac{1}{2} \pm \frac{1}{\sqrt{151}}$ $H \left[\sum_{i \in S} X_i = \frac{[S]}{2} \right] \sum_{i \in S} \frac{1}{\sqrt{[S]}}$ ogree 2 the time agree 2 the (1)2 Parity U 1 -1 U -1 U -1 E X1 So majority and parity have correlation VIST. 7 NOise in purity reduces this correlation to 1-27 -11/17) So if we could agraptically learn majorities

(special case of halfspoces) to error &= Vri, would get alg. for noisy parity. P.J. if alg for the former ran in time p(1/E2-B), would imply 2(h) alg for nowy parity. 2) Laniely - Vardi litting: For Accm, a function F: {0,13 -> {0,13 is a pseudorandon generator if no poly-time adversary can distinguish a sample from Unif ({0,1}) from a sample from F(Unif({0,1})) with non-negl. success prob. Goldreich's PRG : Let $P: \{0,1\}^k \rightarrow \{0,1\}$ be a predicate, e.g. $f_{z} = XOR - MAJ_{a,b}(z) = (z_1 \oplus \cdots \oplus z_a) \oplus Maj(z_{a+1}, \dots, z_{a+b}).$

For Some constant k, sample m random Subjets Spring (n) of size k S, Sz each vertex on left connected to a random subset -0 Sm-1 05~ n ()efine $F(z) = \left(P(z|_{s_1}), \dots, P(z|_{s_m})\right)$ restriction of X < { 0,1} to bitrin S, "Goldreich's PRG" / "Local PRG"

Crypto assumption: For every constant 5>1, there is a constant k and predicate P: {0,13k, {0,1] s.t. that Goldreich's construction is a valid pseudoranden generator. We will use this to prove hardness of learning MLP's. Strutes 1. (] Hardness over {0,1} I Naive lifting Daniely-Vardi gadget

I Let's first show that under the above assumption MLPs are hard to learn over {0,13^.

If we have a sample F(z) from PRG, can regard it as a dataset of poils $(S_{i}, P(z|_{s_{i}}))$

each S; is a random subset of size k, and we want to encode this into a Sande from {0,1} Give $S = \{i_1, \dots, i_k\}, define X \in \{0, 1\}^k$ via: $X \xrightarrow{i} \underbrace{10001000}_{i_k} \underbrace{100000}_{i_k} \underbrace{1000000}_{i_k}$ i.e. jth block of S is eis Claim: \exists MLP N: $\{o_{i}\}^{kn} \rightarrow \{o_{i}\}^{i}$ s.t. $N(x^{s}) = P(z|_{s})$ PJ: (tedions, included for completeness): the function $x^S \mapsto P(z|_S)$ (an be implemented) as a DNF: be $\{0,1\}^k$ $j \in [k]$ $\{1: Z_{j} \neq b_{j}$ s.t P(b]=1Can implement as a reln: if there are M literals in this conjunction, then take

Rel-U($\sum_{j \in [k]} \sum_{i:z \neq b_j} x_{j,l} - (M-1)$) Note: at most one conjunction satisfied, so Can implement by simply summing the neurons: E ReLU(· · · ·)
b \vert \square Implies learning one-hilder-layer MLPs over the distribution over strings $x^{\sum_{i=1}^{i}} \underbrace{\lim_{i \to \infty} \lim_{i \to \infty} \lim_{i \to \infty} \lim_{i \to \infty} \lim_{i \to \infty} \frac{\lim_{i \to \infty} \lim_{i \to \infty} e_{\{0,1\}}^{kn}}{i_{k}}$ is hard (if learner achieves nontrivial test error we know that we are in the pseudorandom Scenaria and can distinguish). (I) Maire lifting Nou want to show hardness over Gaussian inputs. Initial idea: $\frac{\text{dist. over}}{1000} \simeq \text{Ber}\left(\frac{n-1}{n}\right)^{n}$

So given sample x, con "Gonssivnize" as follows: if in block j, it's entry of xs :s 0, then drow 93, ~ N(0,1) > { 1, then draw $y_{j,i}^S \sim N(0,1) | < t$ for t s-t. $\Pr(g \ge t) = \frac{1}{n}$, so that if he apply $\frac{\text{Hres}(g) \stackrel{\text{\tiny def}}{=} 1[g \stackrel{\text{\tiny def}}{=} t] + 0 g \sim N(0, Id_{\text{\tiny Rn}})$, he get a sample from $\text{Ber}(\stackrel{n-1}{=})^{\otimes kn}$. Naive attempt: define N'by N(g) = N(-thres(g)) Fails for several reasons, one of which is that (nppl:ed entrymise) g need not encode a subset Given $(S_1, P(z|_{S_1})), \ldots, (S_m, P(z|_{S_m}))$, define Ganssian dataget : for even ie (m), - Sample g~ N(0, Idka) - if thres(g) is valid encoding of a subject 5

(i.e. has exactly one () in each block); · permute its entries so that thres(g) encodes S; • add Example $(g, P(z|_{s_1}))$ to the dataset - otherwise, add (g, ()) to the dartuset Clarm: 3 MLP Nnaive that labels this datuset perfectly (careat, requires Sign activations) Pf: First, note 7 MLP Nencode S.t. $N_{encode}(g) = \begin{pmatrix} 0 & if \\ fhres(g) & is not valid encoding \end{pmatrix}$, $Iarge & 0 \cdot w$. Trule Nencode $(g) \stackrel{\circ}{=} \left(\sum_{j \in [k]} \sum_{i \in block j} (-thres(g)_{j,i} - (n-2)) \right)$ Some big fortor (this solves problem of g not necessarily encoding a subset) SO Noire (g) = ReLU(N(thres(g)) - Nencode(g))

Correctly labels the Gaussian dataset. O One more (major) issue: three is a discontinuous function! would need infinite weights to implement w ReLUS, or Super-pdy-sized weights to approximate sufficiently well... (III) Daniely-Vardi lifting: Instead J -thres: Consider ramp: "dunger zone" Let Nencode be Nencode with thres -> rang. because we can only afford to use

pdy-sized weights, the intermediate interval is 2 poly(n) wide and we will goe some gis w/ coordinates landing in the interval and replacing thres w/ ramp in naive lifting would fail. Key idea: consider Genetity ... "danger zone" t "ned: un zone" Gpendly (x) is large whenever g has a Courdinate farding in "danger zone". Consider $N = ReLU(N(ramp(g)) - N_{encode}(0)) - \int_{je[k]}^{r} G_{percetty}(g_{j,i})$

What happens if g falls in "medun zone"? Idea: in our Goussian dartaset, Modify the labels as follows: - if all coordinates of g outside of darger and medium zones, keep label as before, i.e. P(2|s;) - if I courdinate in danger zone, set looked to O - if no coordinate in danger zone but some in medium zone, set label to Rel (P(z|s) - E Gpenalty (9;))