Lecture 9: Noise Sensitivity, MLPs, Hermite Analysis

1 Noise Sensitivity and Fourier Concentration

1.1 Recap: Low-Degree Approximation Implies Learnability

Last time, we discussed that Boolean functions $f : \{\pm 1\}^n \to \{\pm 1\}$ admits a nice decomposition, called the Fourier expansion:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}[S] \cdot x_S$$

Note that $x_S = \prod_{i \in S} x_i$. This is a multilinear polynomial - that is, no variable x_i appears squared, cubed, etc. We call $\hat{f}[S]$ the Fourier coefficient and x_S the Parity/Fourier character/basis function.

Suppose that f is well-approximated by its low-degree truncation:

$$f^{\leq t}(x) = \sum_{S:|S|\leq t} \hat{f}[S] \cdot x_S.$$

That is, the error we get by approximating using the low-degree truncation is small, such that $\sum_{S:|S|>t} \hat{f}[S]^2 \leq \epsilon$. Then: given $(x_1, y_1), \ldots, (x_n, y_n)$ for $x_i \sim \{\pm 1\}$, solving the "L1 polynomial regression",

$$\min_{p:\deg(p)\leq t}\frac{1}{n}\sum_{i=1}^{n}|y_i-p(\mathbf{x}_i)|$$

results in an estimator p that achieves test loss OPT + $O(\epsilon)$. Thus, Fourier Concentration is all you need for agnostically learning Boolean Functions.

1.2 Noise-Stability Implies a Low-Degree Approximation

Noise sensitivity can help us show that a given concept class is well-approximated by a low-degree polynomial (and thus, that functions in that class are agnostically learnable).

Definition 1. Given $0 < \eta < \frac{1}{2}$, the noise sensitivity $NS_{\eta}(f)$ is given by

$$NS_{\eta}(f) := P(f(\mathbf{x}) \neq f(\mathbf{x}')),$$

where $x \sim \{\pm 1\}^n$ and x' is given by flipping each bit of x independently with probability η .

Intuitively, high-degree functions (e.g. f = Parity) are very noise sensitive, since flipping even one bit changes the output dramatically. On the flip side, if a function is not noise-sensitive, then it should be well-approximated by a low-degree polynomial. Formally, we can say the following:

Theorem 1. [KOS04] Suppose $NS_{\eta}(f) \leq m(\eta)$. Let $t \approx 1/m^{-1}(\Theta(\epsilon))$. Then $\sum_{S:|S|>t} \hat{f}[S]^2 \leq \epsilon$.

Proof. First, we will prove the following equation:

$$NS_{\eta}(f) = \frac{1}{2} - \frac{1}{2} \sum_{S \subseteq [n]} (1-2)^{|S|} \hat{f}[S]^2$$
⁽¹⁾

The following is the proof for equation 1.

We use the Fourier transformation.

$$1 - 2NS_{\eta}(f) = (1 - NS_{\eta}(f)) - (NS_{\eta})$$

= $P(f(\mathbf{x}) = f(\mathbf{x}')) - P(f(\mathbf{x}) \neq f(\mathbf{x}'))$
= $E[f(\mathbf{x})f(\mathbf{x}')]$
= $\sum_{S,T \subseteq [n]} \hat{f}[S]\hat{f}[T]E[x_{S}x_{T}']$

Simplifying for $E[x_S x'_T]$, we get:

$$E[x_{S}x_{T}'] = E\left[\left(\prod_{i \in S \setminus T} x_{i}\right)\left(\prod_{i \in S \cap T} x_{i}x_{i}'\right)\left(\prod_{i \in T \setminus S} x_{i}'\right)\right]$$
$$= \prod_{i \in S \setminus T} E[x_{i}] \prod_{i \in S \cap T} E[x_{i}x_{i}'] \prod_{i \in T \setminus S} E[x_{i}']$$
$$= \begin{cases} 0 & \text{if } S \neq T\\ (1-2\eta)^{|S|} & \text{if } S = T \end{cases}$$

Thus, we're left with:

$$1 - 2NS_{\eta} = \sum_{S \subseteq [n]} (1 - 2\eta)^{|S|} \hat{f}[S]^{2}$$
$$\implies NS_{\eta}(f) = \frac{1}{2} - \frac{1}{2} \sum_{S \subseteq [n]} (1 - 2\eta)^{|S|} \hat{f}[S]^{2}$$

Second, to complete our proof, we will show that:

$$\sum_{S \subseteq [n]: |S| \ge 1/\eta} \hat{f}[S]^2 \lesssim NS_{\eta}(f).$$
⁽²⁾

To show equation 2, we will use the fact that $(1 - x)^a \le e^{-ax}$, which implies that, if $|S| \ge 1/\eta$, then $(1 - 2\eta)^{|S|} \le e^{-2\eta|S|} \le e^{-1/2}$. We will also use the fact that $1 = E[f^2] = \sum_{S \subseteq [n]} \hat{f}[S]^2$. Now, we can say:

$$\begin{split} 2NS_{\eta}(f) &= 1 - \sum_{S \subseteq [n]} (1 - 2\eta)^{|S|} \hat{f}[S]^2 \\ &= \sum_{S \subseteq [n]} \hat{f}[S]^2 \left(1 - (1 - 2\eta)^{|S|} \right) \\ &\geq \sum_{|S| \ge 1/\eta} \hat{f}[S]^2 \left(1 - (1 - 2\eta)^{|S|} \right) \\ &\geq \left(1 - e^{1/2} \right) \sum_{|S| \ge 1/\eta} \hat{f}[S]^2 \end{split}$$

Finally, notice that $t = 1/\eta$ implies that $O(\epsilon) = m(\eta) \ge NS_{\eta}(f)$. This completes our proof.

Furthermore, we can say the following about functions of *k* halfspaces with low noise sensitivity. Recall that a halfspace is a function of the form $g(x) = sgn(\langle w, x \rangle)$.

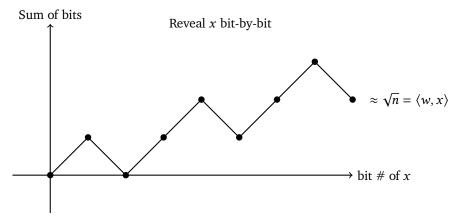
Theorem 2. [KOS04] Any function f of k halfspaces satisfies $NS_{\eta}(f) \leq k\sqrt{\eta}$. Furthermore, f can be approximately learned in time $n^{O(k^2/\epsilon^2)}$.

Proof. The proof is involved, so we will not give the full proof. Instead, we will prove a baby version to give intuition. Suppose $w = [1, ..., 1]^T$. Then $f(x) = sgn(\langle w, x \rangle)$ is simply the majority function: if and only if the majority of the entries in *x* are +1, f(x) will output +1.

Suppose we reveal x bit-by-bit, and we keep track of the sum of all bits. This is a random walk that is approximately Gaussian. The magnitude of our final point should be about \sqrt{n} .

Now, x' flips each bit of x with probability η . We flip approximately ηn bits. Equivalently, we extend the random walk about ηn steps. We want to know the probability that the displacement in the opposite-to-original direction is more than \sqrt{n} . To upper bound this probability, we will note that $E[\text{displacement}] = \sqrt{\eta n}$ and we will use the Markov inequality to say the following:

$$\Pr[\text{displacement} \ge \sqrt{n}] \le \sqrt{\eta} \tag{3}$$



Now, suppose we have a function f of k halfspaces, i.e.:

$$f(\mathbf{x}) = h(\operatorname{sgn}(\langle \mathbf{w}_1, \mathbf{x} \rangle), \dots, \operatorname{sgn}(\langle \mathbf{w}_k, \mathbf{x} \rangle).$$

Then we want to prove that $NS_{\eta}(f) \leq k\sqrt{n}$. Indeed:

$$NS_{\eta}(f) = \Pr[f(\mathbf{x}) \neq f(\mathbf{x}')]$$

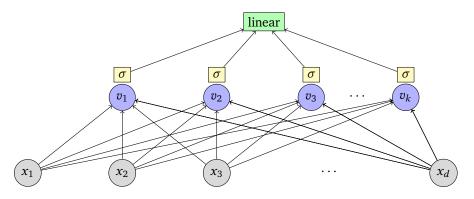
$$\leq \Pr[\exists i \in [k] : \operatorname{sgn}(\langle \mathbf{w}_{i}, \mathbf{x} \rangle) \neq \operatorname{sgn}(\langle \mathbf{w}_{i}, \mathbf{x}' \rangle)]$$

$$\leq \sum_{i=1}^{k} \Pr[\operatorname{sgn}(\langle \mathbf{w}_{i}, \mathbf{x} \rangle) \neq \operatorname{sgn}(\langle \mathbf{w}_{i}, \mathbf{x}' \rangle)] \quad (\text{Union-Bound})$$

$$\lesssim k\sqrt{\eta}$$

Let $\eta = \frac{\epsilon^2}{k^2}$. Then $k\sqrt{\eta} = \epsilon$. The degree of our low-degree approximation of f is $1/\eta = O(k^2/\epsilon^2)$. And any degree-t approximation of f can be learned in time n^t , completing our proof.

2 One-hidden-layer MLPs



We turn to a more realistic scenario for Probably Approximately Correct (PAC) learning: functions that have continuously-valued input and output. A function is a mapping $f : \mathbb{R}^d \to \mathbb{R}$. Our activation function σ can be more complex than the sign, such as ReLU or tanh. We can think of this one-hidden-layer multilayered perceptron as the "model organism" for neural networks: though it is simple, it can serve as a rich testbed for algorithms such as nonconvex optimization, tensor methods, kernel methods, and representation learning.

Succintly, we can write a one-hidden-layer MLP as:

$$f(\mathbf{x}) = \sum_{i=1}^{k} \lambda_i \sigma(\langle \mathbf{v}_i, \mathbf{x} \rangle), \quad \text{for } \|\mathbf{v}_i\| = 1$$
(4)

This is the simplest nontrivial neural network, but it is expressive. We will state but not prove the following theorem:

Theorem 3. [Kol56] [Arn57] If the $\langle v_i, x \rangle$'s are replaced with $\sum_j \phi_{ij}(x_j)$'s, then f(x) can realize any continuous function over a compact support.

Now, we will begin learning the toolbox for analyzing PAC-learning on continuously-valued inputs.

3 Hermite Polynomial, Low-Degree Approximation

The canonical distribution of inputs in this setting - the analogue of the uniform distribution over the hypercube - is the Gaussian. That is, we let $\mathcal{D}_X \sim \mathcal{N}(0, \mathrm{Id}_d)$.

There is an analogous toolbox for this setting: in place of the Fourier characters $\{x \rightarrow x_S\}$, we have the Hermite polynomials $\{h_\alpha\}$, which form an orthonormal basis (of all square-integrable functions) with respect to the Gaussian measure, i.e.:

$$\int_{-\infty}^{\infty} h_{\alpha}(\mathbf{x}) h_{\beta}(\mathbf{x}) \frac{1}{\sqrt{2\pi}} e^{-\frac{\mathbf{x}^2}{2}} = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

Or, equivalently:

$$\mathbb{E}_{\mathbf{x}\sim\mathcal{N}(\mathbf{0},\mathrm{Id}_d)}[h_{\alpha}(\mathbf{x})h_{\beta}(\mathbf{x})] = \mathbb{1}[\alpha = \beta]$$

The first three Hermite polynomials in one dimension are $h_1(x) = x$, $h_2(x) = \frac{1}{\sqrt{2}}(x^2 - 1)$, $h_3(x) = \frac{1}{\sqrt{6}}(x^3 - 3x)$. The exact functional form is not important for us, but interested readers can see Wikipedia for "probabilist's Hermite Polynomials." In higher dimensions, the Hermite polynomials are simply products of one-dimensional Hermite polynomials: for tuple $\alpha = (\alpha_1, \dots, \alpha_d)$,

$$h_{\alpha}(\mathbf{x}) = \prod_{i=1}^{d} h_{\alpha_i}(x_i)$$

Instead of a Fourier expansion, we have a Hermite expansion. We can express any square-integrable function as: $\sum_{n=0}^{\infty} c_n$

$$f(\mathbf{x}) = \sum_{\alpha} \hat{f}_{\alpha} \cdot h_{\alpha}(\mathbf{x}),$$

where \hat{f}_{α} is the Hermite coefficient. As before, we can empirically estimate $\mathbb{E}[f \cdot h_{\beta}(\mathbf{x})]$ using the training data and then extract the coefficients using orthonormality:

$$\mathbb{E}[f \cdot h_{\beta}(\mathbf{x})] = \sum_{\alpha} \hat{f}_{\alpha} \cdot \mathbb{E}[h_{\alpha}(\mathbf{x})h_{\beta}(\mathbf{x})] = \hat{f}_{\beta}.$$

Furthermore, we have the Gaussian analogue of Plancherel's:

$$\mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[f(x)^2 \right] = \sum_{\alpha} \hat{f}_{\alpha}^2 := \|f\|_2^2$$

Note that the L2 norm of a function *f* is defined as $||f||_2 = \sqrt{\int |f(x)|^2 dx}$.

There exists analogous notions of low-degree approximations in this Gaussian setting. If you plot the square of the Hermite coefficients as a function of the degree l, you get a nice polynomial decay that's about $1/l^{5/4}$. As the degree gets larger, the Hermite coefficients get smaller. This gives an intuition for the following two theories that we will not prove. In the one-dimensional case:

Theorem 4 (folklore). *There exists a degree-O*($1/\epsilon^{4/3}$) *polynomial* $p : \mathbb{R} \to \mathbb{R}$ *such that:*

$$\|p(\cdot) - \operatorname{ReLU}(\cdot)\|_2 \le \epsilon$$

In the *d*-dimensional case:

Theorem 5 (folklore). There exists a degree- $O(1/\epsilon^{4/3})$ polynomial $p : \mathbb{R} \to \mathbb{R}$ such that $\forall v \in \mathbb{S}^{d-1}$:

$$\|p(\langle \mathbf{v}, \cdot \rangle) - \operatorname{ReLU}(\langle \mathbf{v}, \cdot \rangle)\|_2 \le \epsilon$$

This implies there exists a $d^{O(1/\epsilon^{4/3})}$ -time algorithm (polynomial regression) for agnostically learning x \rightarrow ReLU($\langle v, x \rangle$) over Gaussian inputs.

More generally, for one-hidden-layer MLPs $f(x) = \sum_{i=1}^{k} \lambda_i \text{ReLU}(\langle v_i, x \rangle)$, the degree- $t = \Theta(1/\epsilon^{4/3})$ Hermite truncation $f^{\leq t} = \sum_i \lambda_i p_i$ satisfies:

$$\|f - f^{\leq t}\|_2 \leq \sum_i |\lambda_i| \cdot \|p_i - \operatorname{ReLU}(\langle \mathbf{v}_i, \cdot \rangle)\|_2 \leq \epsilon \|\lambda\|_1.$$

So far, we've found that we can agnostically learn ReLUs in time $d^{\text{poly}(1/\epsilon)}$ and one-hidden-layer MLPs in time $d^{\text{poly}(\|\lambda\|_1/\epsilon)}$.

Now, we ask ourselves, for one-hidden-layer MLPs:

- 1. Can we remove the ϵ dependence?
- 2. Can we remove the $\|\lambda\|_1$ dependence?
- 3. Can we handle more layers?

4 Tensor Methods

In the setting where the one-hidden-layer MLPs are non-degenerate - that is, the v_i 's are robustly linearly independent - we can turn this supervised learning problem into a tensor decomposition problem.

As our starting point, we will organize the Hermite polynomials into a tensor, sometimes called the (higherorder) score function (of a Gaussian):

$$S_l(\mathbf{x}) \in \left(\mathbb{R}^d\right)^{\otimes l}, \quad (S_l)_{i_1,\dots,i_l} = \prod_i \sqrt{\alpha_{i!}} h_{\alpha_i}(\mathbf{x})$$

where $\alpha = (\alpha_1, ..., \alpha_d)$ is a tuple where α_i is the number of occurrences of *i* among the $\{i_1, ..., i_l\}$. The first three score functions are: $s_1(x) = x, S_2(x) = xx^T - \text{Id}_d, S_3(x) = x^{\otimes 3} - x \otimes_3 \text{Id}_d$. We can think of each S_j as the tensor equivalent of the Hermite polynomial h_j . More succinctly, we could write:

$$S_l(\mathbf{x}) = \frac{(-1)^l}{\gamma(\mathbf{x})} \cdot \nabla^l \gamma(\mathbf{x}),$$

where γ is the *d*-dimensional Gaussian PDF, and $\nabla^l \gamma(x)$ is its *l*-th derivative. The upshot of this is that we want to approximate *f*, and the correlation of *f* and the score function *S*_l gives us a tensor that will be low-rank (and so we can through Jennrich's algorithms or sum-of-squares at it).

Theorem 6. Stein's identity: If f is sufficiently "regular," then:

$$\mathbb{E}[f(\mathbf{x}) \cdot S_l(\mathbf{x})] = \mathbb{E}[\nabla^l f(\mathbf{x})].$$

Proof. We will prove a baby version of Stein's identity using Gaussian integration by parts. In particular, we will prove the statement that for $x \sim \mathcal{N}(0, 1)$:

$$\mathbb{E}[f(x) \cdot x] = \mathbb{E}[f'(x)] \tag{5}$$

$$\mathbb{E}[f(x) \cdot (x^2 - 1)] = \mathbb{E}[f''(x)] \tag{6}$$

Let γ denote the Gaussian density. Note that $x\gamma(x) = -\gamma'(x)$, and that $\gamma''(x) = (-x\gamma(x))' = (x^2 - 1)\gamma(x)$. Then:

$$\mathbb{E}[f(x)x] = \int_{-\infty}^{\infty} f(x)x\delta(x)dx$$

$$= \left(\sum_{-\infty}^{\infty} f'(x)\gamma(x)dx\right) + \left(f(x)\delta(x)\right|_{\infty}^{\infty}\right)$$

$$= \mathbb{E}[f'(x)] + 0$$

$$= \mathbb{E}[f'(x)]$$

$$\mathbb{E}[f(x)(x^{2} - 1)] = \int_{-\infty}^{\infty} f(x)(x^{2} - 1)\gamma(x)dx$$

$$= \left(\int_{-\infty}^{\infty} f'(x)(x\gamma)dx\right) + \left(f(x)x\gamma(x)\right|_{-\infty}^{\infty}\right)$$

$$= \int_{-\infty}^{\infty} f''(x)\gamma(x)dx + \left(f'(x)\gamma(x)\right|_{-\infty}^{\infty}\right) + \left(f(x)x\gamma(x)\right|_{-\infty}^{\infty}\right)$$

$$= \mathbb{E}[f''(x)] + 0 + 0$$

$$= \mathbb{E}[f''(x)]$$

Happily, Stein's identity gives us a one-line proof of problem 1a of pset 1! Recall the setup, that we want to construct a tensor which we an run Jennrich's on to get the v_i 's that make up f. That is,

$$f(\mathbf{x}) = \sum_{i=1}^{k} \lambda_i \langle \mathbf{v}_i, \mathbf{x} \rangle^3.$$

Applying Stein's identity, we have:

$$\mathbb{E}[f(\mathbf{x}) \cdot S_3(\mathbf{x})] = \mathbb{E}[\nabla^3 f(\mathbf{x})] = 6 \sum_{i=1}^k \lambda_i \mathbf{v}_i^{\otimes 3},$$

which we can use Jennrich's on. Note that the last equality is because:

$$(\nabla^3 \langle \mathbf{v}, \mathbf{x} \rangle^3)_{abc} = \frac{\partial^3}{\partial x_a \partial x_b \partial x_c} \langle \mathbf{v}, \mathbf{x} \rangle^3 = 6 v_a v_b v_c.$$

More generally, for any smooth activation σ , consider the following function f that we want to learn:

$$f(\mathbf{x}) = \sum_{i=1}^{k} \lambda_i \sigma(\langle \mathbf{v}_i, \mathbf{x} \rangle).$$

Applying Stein's identity, we have:

$$\mathbb{E}[f(\mathbf{x}) \cdot S_l(\mathbf{x})] = \mathbb{E}[\nabla^l f(\mathbf{x})] = \mathbb{E}\left[\sigma^{(l)}(\mathbf{x})\right] \sum_{i=1}^k \lambda_i \mathbf{v}_i^{\otimes l},$$

where $\sigma^{(l)}$ is the l-th derivative of the activation. Importantly, we get a low-rank tensor multiplied by some constant factor. Even if σ is not smooth, as long is it is square-integrable, we can show that:

$$\mathbb{E}[f(\mathbf{x}) \cdot S_l(\mathbf{x})] = \sqrt{l!} \hat{\sigma}_l \sum_{i=1}^k \lambda_i \mathbf{v}_i^{\otimes l},$$

where $\hat{\sigma}_l$ is the *l*-th Hermite coefficient of your activation function σ . Thus, as proven in [JSA15], learning onehidden-layer MLPs reduces to tensor decomposition. When v_i 's are robustly linearly independent, there is an algorithm that runs in $poly(d, k, 1/\epsilon)$ time and is proper. It's proper in that, rather than outputting a low-degree polynomial, we're outputting the parameters of a network.

However, if we make no assumptions about the weights v_1, \ldots, v_k , we have an issue. We can no longer hope to recover the parameters: for instance, we run into a problem with the two networks [ReLU($\langle v, x \rangle$) – ReLU($\langle v + \epsilon \cdot w, x \rangle$)] vs. the network that is the constant 0. Nonetheless, we still have the following two theorems:

Theorem 7. [CN23] For learning arbitrary one-hidden-layer MLPs over Gaussians, we have a proper algorithm that runs in time $poly(d^{k^2}, 1/\epsilon)$.

Theorem 8. [DK23] For learning arbitrary one-hidden-layer MLPs over Gaussians, we have an improper algorithm that runs in time $poly(d^k, 1/\epsilon)$.

Intuitively, both algorithms are bottlenecked at d^{k^c} because they work with $\sum_i \lambda_i \mathbf{v}_i^{\otimes l}$ for $l = 2, ..., k^c$.

5 Lower bounds

The question is: can we get away with just using lower-degree tensors than k^c ? The answer, we will see, is no. Indeed, there is a simple, two-dimensional example for which the corresponding tensor is 0 unless we go up to a high degree.

Theorem 9. [DKKZ20] There exists a choice of $\{\sigma_i, v_i\}_{i=1}^k$ such that for all $1 \le l \le k/2$, we have:

$$\sum_{i} \lambda_i \mathbf{v}_i^{\otimes l} = \mathbf{0}$$

Specifically, take $\lambda_i - (-1)^i$ and $v_i = \left(\cos\left(\frac{2\pi i}{k}\right), \sin\left(\frac{2\pi i}{k}\right)\right)$.

The above theorem suggests that any tensor-based algorithm must incur $d^{\Omega(k)}$ runtime.

What about for non-tensor algorithms, like kernel methods or gradient decent? These approaches all have one major thing in common: they only use the correlations between label y and functions of x.

- 1. Tensor methods: $\underbrace{\mathbb{E}[yS_l(\mathbf{x})]}_{\text{correlation of } \mathbf{x} \& \mathbf{y}}$.
- 2. Kernel methods: $\min_{x} \mathbb{E} \left[\left(y \sum_{j} c_{j} \phi_{j}(\mathbf{x}) \right)^{2} \right]$ for a basis of features $\{\phi_{j}(\mathbf{x})\}$. This is equivalent to $\min_{x} \mathbb{E} \left[\left(\sum_{j} c_{j} \phi_{j}(\mathbf{x}) \right)^{2} \right] 2\mathbb{E} \left[y \cdot \sum_{j} c_{j} \phi_{j}(\mathbf{x}) \right] + \mathbb{E} [y^{2}].$
- 3. Gradient descent: $\nabla_{\theta} \left\{ \mathbb{E} \left[(y f_{\theta}(\mathbf{x}))^2 \right] \right\} = 2\mathbb{E} [f_{\theta}(\mathbf{x}) \cdot \nabla f_{\theta}(]boldx)] 2\mathbb{E} [y \cdot \nabla f_{\theta}(\mathbf{x})].$

correlation of x & y

These are all "correlational statistical query" algorithms. In the Correlational Statistical Query (CSQ) model, we're not allowed to view individual data points. Instead, we only get a population-level statistic. In particular, we feed a function $\psi : \mathbb{R}^d \to \mathbb{R}$ to an Oracle, and the Oracle produces outputs a noisy estimate for the correlation between y and psi(x), i.e. $\mathbb{E}[y \cdot \psi(x)]$ + noise. We say the noise is bounded: $|\text{noise}| \le \tau$, where the tolerance τ roughly corresponds to $\sqrt{1/\#}$ samples. Unfortunately, we have strong evidnece that any method that falls under the CSQ model cannot beat d^k :

Theorem 10. In CSQ, learning one-hidden-layer MLP's over Gaussians, even to constant error, requries $2^{d^{\Theta(1)}}$ queries or tolerance $d^{-\Omega(k)}$.

We will see the proof in the computational complexity unit next week.

In summary, recall our guiding questions. For one-hidden-layer MLP's, we could learn a low-degree approximation in time $d^{\text{poly}(\|\lambda_1\|/\epsilon)}$. We asked:

- 1. Can we impprove the ϵ dependance? Yes!
- 2. Can we improve the $\|\lambda\|_1$ dependenace? Not with CSQ, though we'll see how to improve on this by going beyond correlational statistical query models.
- 3. Can we handle more layers? We'll answer this when we go beyond CSQ.

References

- [Arn57] Vladimir Arnold. On functions of three variables. Proceedings of the USSR Academy of Sciences, 114:679–681, 1957.
- [CN23] Sitan Chen and Shyam Narayanan. A faster and simpler algorithm for learning shallow networks. 2023.
- [DK23] Ilias Diakonikolas and Daniel M. Kane. Efficiently learning one-hidden-layer relu networks via schur polynomials. 2023.
- [DKKZ20] Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, and Nikos Zarifis. Algorithms and sq lower bounds for pac learning one-hidden-layer relu networks. 2020.
 - [JSA15] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods. 2015.
 - [Kol56] Andrey Kolmogorov. On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables. *Proceedings of the USSR Academy of Sciences*, 108:179–182, 1956.
- [KOS04] Adam R. Klivans, Ryan O'Donnell, and Rocco A. Servedio. Learning intersections and thresholds of halfspaces. *Journal of Computer and Science System*, 68(4):808–840, 2004.