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Lecture 7: SoS and Gaussian mixtures

Last time: SoS basics and application to robust regression. Recall the general design setup for our SoS algorithm:

1. Set up a system of polynomial inequalities in variable. For robust regression: {(𝑎𝑖),𝑤}.

2. Optimize an objective over pseudo-distributions �̃� over solutions.

3. Give “simple proof of identifiability” that global optimizer has small clean MSE.

4. Rounding step. For robust regression: output �̃�[𝑤].

Today, we study an application to learning mixtures of Gaussians. Warning: The system of inequalities and
rounding step will be trickier than with robust regression.

1 Mixtures of Gaussians
Definition 1 (Mixtures of Gaussians). Given centers 𝜇1, . . . , 𝜇𝑘 ∈ ℝ𝑑 and mixing weights 𝜆1, . . . , 𝜆𝑘 ∈ [0, 1] such
that

∑
𝑖 𝜆𝑖 = 1, we are given i.i.d. samples from

𝑞 =
∑︁
𝑖

1
𝑘
· 𝑁 (𝜇𝑖 , Id𝑑 ) .

For our purposes today, assume 𝜆𝑖 = 1/𝑘 for all 𝑘.
If the 𝜇𝑖 are robustly linearly independent and 𝑘 ≤ 𝑑, we can use Jennrich’s algorithm. When 𝑘 ≫ 𝑑 (i.e.

the overcomplete regime), it is not possible to apply Jennrich’s algorithm, but (i) if 𝜇𝑖 are random and 𝑘 ≪ 𝑑ℓ/2

then we may apply the tensor power method on degree-ℓ tensors or (ii) if 𝜇𝑖 ’s are smoothed, then Jennrich’s on
degree-ℓ moment tensor provably works when 𝑘 ≪ 𝑑 ⌊ (ℓ−1)/2⌋ .

Today, we try to find an approach that doesn’t require strong conditions on 𝜇𝑖 . Instead we only require that
𝜇𝑖 ’s are ?well-separated?. Define

Δ
def
= max

𝑖≠𝑗
|𝜇𝑖 − 𝜇 𝑗 |.

Intuitively, it is more difficult to distinguish the centers when they are close together. A natural question to ask is
the minimum separation Δ such that the centers are efficiently recoverable. One of the first results on this question
was:

Theorem 1 ([Das99]). If Δ ≥ Ω(𝑑1/2), then

ℙ𝑥∼𝑁 (𝜇,Id) [∥𝑥 − 𝜇∥ >
√
𝑑 + 𝑡] ≤ exp(−Ω(𝑡2)),

so components are nearly disjoint and a clustering algorithm will work.

In some sense, this theorem states that the natural radius of a Gaussian cluster is 𝑂 (𝑑1/2). In [AK05], the
authors exploit a geometric observation to obtain a stronger bound for Δ.

Theorem 2 ([AK05]). Suppose Δ ≥ Ω(𝑑1/4). Even though components now overlap, it follows from a geometric
argument that every pair of vertices from the same component will be closer than every of vertices from different
components, so the centers can be recovered efficiently.

The geometric argument leverages the fact that, in high dimensions, random vectors are approximately
orthogonal, so we may apply the Pythagorean theorem.

How far can the bound for Δ be pushed down? In [RV17], the authors proved an impossibility result.
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Theorem 3 ([RV17]). For Δ = 𝑜 (
√︁
log𝑘), it is information-theoretically impossible to recover the centers 𝜇𝑖 .

The most natural question to ask if if the gap can be closed. Is the Θ(
√︁
log𝑘) threshold tight? This brings us to

the main result of this lecture.
Theorem 4 ([HL18], [KSS18], [DKS18]). For any 𝑡 > 0, if Δ ≥ Ω(𝑘1/𝑡 ), there is an algorithm with time and
sample complexity 𝑑𝑂 (𝑡 ) · poly(𝑘)-time which recovers 𝜇1, . . . , 𝜇𝑘 to error 𝑡𝑡/2/poly(𝑘, 𝑑).
In other words, if Δ ≥ 𝑘0.001, time and sample complexity are polynomial. By taking 𝑡 = log𝑘, we get a
quasipolynomial-time algorithm that achieves the threshold Δ ≍ log𝑘. (The quasipolynomial-time algorithm was
improved to a polynomial time algorithm in [LL22].) This algorithm is based on running degree-𝑡 SoS algorithm.

1.1 Inefficient algorithm
Idea: brute-force search over subsets of size 𝑁 = 𝑛/𝑘 to find a subset that “looks like it came from a single
Gaussian”. What precisely does it mean to look like a Gaussian? The moment bounds for N (𝜇, Id) are a distinctive
feature of Gaussian distributions. For any 𝜇 ∈ 𝕊𝑑−1,

𝔼𝑥 [⟨𝜇, 𝑥 − 𝜇⟩𝑠 ] = (𝑠 − 1)!! ≤ 𝑠𝑠/2 for all even 𝑠.
Hence for sufficiently many samples 𝑞 ∼ N (𝜇, Id),

1
𝑁

∑︁
𝑖

⟨𝑢, 𝑥𝑖 − 𝑢⟩𝑠 ≤ 2𝑠𝑠/2 for all even 𝑠. (1)

with high probability.
This leads to the main idea behind our “inefficient algorthim” on which we will apply SoS. Search over all

subsets of size 𝑁 = 𝑛/𝑘 and find a subset {𝑥𝑖 } of the samples that satisfies inequality (1) where 𝑢 is taken as the
estimated mean. More explicitly, here is the SoS Program.
Input: {(𝑥𝑖)}𝑛𝑖=1 sampled i.i.d. from 1

𝑘

∑
𝑗 N (𝜇 𝑗 , Id).

Variables:

• 𝜇 (vector): our estimates for a center
• 𝑎1, . . . , 𝑎𝑛 (scalar): indicators for points that we think comprise a component.

Constraints:

• 𝑎2𝑖 − 𝑎𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑛 (indicators are in {0, 1})
• ∑

𝑖 𝑎𝑖 = 𝑛/𝑘 (components makes up 1/𝑘 of data)
• 1

𝑛/𝑘
∑

𝑖 𝑎𝑖𝑥𝑖 = 𝜇 (𝜇 is the empirical mean of selected points)

• 1
𝑛/𝑘

∑
𝑖 𝑎𝑖 ⟨𝑥𝑖 − 𝜇,𝑢⟩𝑡 ≤ 2𝑡𝑡/2∥𝑢∥𝑡 (empirical moments approximate Gaussian)

Problem: Unlike in robust regression, there are 𝑘 “ground truths” instead of just 1. In fact, any distribution
over components yields a valid pseudo-distribution, so we will need to pick a special objective function to force
the pseudo-distribution to look like a uniform distribution over the components.

In particular, these subtleties imply we that need a fancier “rounding algorithm” than simply outputting �̃�[𝜇].
Another problem: Our last constraint is currently quantified over all 𝑢 ∈ 𝕊𝑑−1, but we need to write a finite

set of constraints for the SoS program.
Idea: We can encode everything in a big tensor

𝑇 =
1

𝑛/𝑘
∑︁
𝑖

𝑎𝑖 (𝑥𝑖 − 𝜇)⊗𝑡 =⇒ 1
𝑛/𝑘

∑︁
𝑖

𝑎𝑖 ⟨𝑥𝑖 − 𝜇,𝑢⟩𝑡 = 𝑇 (𝑢,𝑢,𝑢).

Then we want a constraint that 𝑇 ≈ 𝔼𝑥∼N (0,Id) [𝑥⊗𝑡 ], so we may set

∥𝑇 − 𝔼𝑥∼𝑁 (0,Id) [𝑥⊗𝑡 ] ∥2𝐹 ≤ 1
as the constraint.
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1.2 Proof of identifiability
For notational convenience, let 𝑁 = 𝑛/𝑘 . Let 𝑆 𝑗 = {𝑖 ∈ [𝑛] from N (𝜇𝑖 , Id)}. For technical reasons to be seen later,
suppose 𝑡 is a power of 2 and suppose Δ ≫

√
𝑡𝑘1/𝑡 .

Let 𝑎𝑖 choose a subset 𝑆 ⊂ [𝑛] of size 𝑁 , and define 𝑐 𝑗 = |𝑆∩𝑆 𝑗 |
𝑁

. Thus 𝑐 𝑗 is a normalized measure of the overlap
between 𝑆 and 𝑆 𝑗 . However, we can’t define 𝑐 𝑗 in the SoS paradigm, so write

𝑐 𝑗 =
1
𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖

Thus ∑𝑘
𝑗=1 𝑐 𝑗 = 1.

For convenience and pedagogical purposes, we restrict our attention to the case 𝑑 = 1. The higher-dimensional
cases are relatively similar. Then the moment bound in (1) is equivalent to

1
𝑁

∑︁
𝑖

𝑎𝑖 (𝑥𝑖 − 𝜇)𝑡 ≤ 2𝑡𝑡/2

Lemma 1. For all 𝑗 ,
𝑐𝑡𝑗 (𝜇 − 𝜇 𝑗 )𝑡 ≤ 𝑂 (𝑡)𝑡/2 · 𝑐𝑡−1𝑗

Interpretation. Taking this out of the SoS paradigm, this is equivalent to |𝜇 − 𝜇 𝑗 | ≤ 𝑂 (
√
𝑡) · 𝑐−1/𝑡

𝑗
. i.e. if the overlap

is large, than the outputted mean will be close to ground-truth.
Degree-𝑡 SoS proof of Lemma 1. The main tool is “SoS Hölder’s.” Recall Hölder’s inequality, which states that
⟨𝑏, 𝑐⟩ ≤ ∥𝑏∥𝑝 · ∥𝑐 ∥𝑞 for all 𝑝, 𝑞 satisfying 1

𝑝
+ 1

𝑞
. It is easier to deal with integral powers than fractional powers in

the SoS paradigm, so rewrite this inequality by the equivalent(∑︁
𝑖

𝑏𝑖𝑐𝑖

)𝑡
≤

(∑︁
𝑖

𝑏
𝑡

𝑡−1
𝑖

) (∑︁
𝑖

𝑐𝑡𝑖

)
.

If 𝑏2𝑖 = 𝑏𝑖 , then there is a degree-𝑡 SoS proof that the above inequality is true (proof omitted). Applying this to
our situation, we obtain that

©« 1
𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖
ª®¬
𝑡

(𝜇 − 𝜇 𝑗 )𝑡 =
©« 1
𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖 (𝜇 − 𝜇 𝑗 )
ª®¬
𝑡

≤ ©« 1
𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖
ª®¬
𝑡−1 ©« 1

𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖 (𝜇 − 𝜇 𝑗 )𝑡
ª®¬

= 𝑐𝑡−1𝑗

©« 1
𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖 [(𝜇 − 𝑥𝑖) − (𝜇 𝑗 − 𝑥𝑖)]𝑡
ª®¬

Recall from last lecture that (𝑎 + 𝑏)𝑡 ≤ 2𝑡 (𝑎𝑡 + 𝑏𝑡 ) for all 𝑡 (also from Hölder’s). Since 𝑡 is even, it follows that the
last expression is bounded by

©«1𝑛
∑︁
𝑖∈𝑆 𝑗

𝑎𝑖
ª®¬
𝑡

(𝜇 − 𝜇 𝑗 )𝑡 ≤ 𝑐𝑡−1𝑗 2𝑡 ©« 1
𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖 (𝜇 − 𝑥𝑖)𝑡 +
1
𝑁

∑︁
𝑖∈𝑆 𝑗

𝑎𝑖 (𝜇 𝑗 − 𝑥𝑖)𝑡ª®¬
≤ 𝑐𝑡−1𝑗 2𝑡

(
2𝑡𝑡/2 + 2𝑡𝑡/2

)
= 𝑐𝑡−1𝑗 𝑂 (𝑡)𝑡/2

by applying the moment bound to N (𝜇, Id) and the constraint 1
𝑁

∑
𝑗∈𝑆 𝑗

𝑎𝑖 (𝜇 𝑗 − 𝑥𝑖)𝑡 ≤ 2𝑡𝑡/2. □
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Claim 1. The brute-force algorithm returns 𝜇 which is very close to 𝜇 𝑗 . Explicitly, for every center 𝜇∗ = 𝜇 𝑗 , then the
component 𝑆 𝑗∗ with largest overlap with 𝑆 satisfies |𝑆 ∩ 𝑆 𝑗∗ | = (1 − 𝛿)𝑁 for 𝛿 < 𝑘𝑡𝑡/2 −𝑂 (1/𝛿𝑡 ) << 1.

Proof of claim. Suppose without loss of generality that 𝑐1 ≥ 𝑐2 ≥ · · · ≥ 𝑐𝑘 . Since
∑

𝑗 𝑐 𝑗 = 1, we have 𝑐1 ≥ 1/𝑘.
Let 𝑐1 = 1 − 𝛿 , so 𝑐2 ≥ 𝛿/𝑘. Thus there is non-trivial overlap for at least two components. By Lemma 1,

|𝜇 − 𝜇1 | ≤ 𝑂 (
√
𝑡) · 𝑐−1/𝑡1 = 𝑂 (

√
𝑡) (1 − 𝛿)−1/𝑡 ≤ 𝑂 (

√
𝑡)𝑘1/𝑡 ≪ Δ

By the triangle inequality,
|𝜇 − 𝜇2 | ≥ |𝜇1 − 𝜇2 | − |𝜇1 − 𝜇 | ≥ Δ/2

Then applying Lemma 1 again,

Δ/2 ≤ |𝜇 − 𝜇2 | ≤ 𝑂 (
√
𝑡) · 𝑐−1/𝑡2 ≤ 𝑂 (

√
𝑡) · (𝛿/𝑘)−1/𝑡

Rearranging, this gives

𝛿 ≲

(
𝑘1/𝑡√𝑡

Δ

)𝑡
= 𝑜 (1)

□

The upshot of this is that 𝑐1 is very close to 1, so very little is lost by throwing away the vector chosen by the
SoS algorithm and we may throw away the points corresponding to this cluster, then repeat on find the centers of
the remaining clusters.

However, there is a problem with our proof which captures a big theme in the SoS paradigm. The claim above
“breaks symmetry” by ordering the 𝑐𝑖 and examining the largest. This sort of proof is hard to implement in the
SoS paradigm. Instead we want to prove a version of the claim which doesn’t break symmetry.

Claim 2 (Symmetric version of Claim 1).∑︁
𝑗

𝑐2𝑗 ≥ 1 − 𝑘2𝑡𝑡/2𝑂 (1/Δ)𝑡 = 1 − 𝑜 (1)

Interpretation. This is a stronger claim because ∥𝑐 ∥∞ ≥ ∥𝑐 ∥22
∥𝑐 ∥1 = ∥𝑐 ∥22.

Proof of Claim. Rewrite

1 =

(∑︁
𝑗

𝑐 𝑗

)2
=

∑︁
𝑗

𝑐2𝑗 +
∑︁
𝑖≠𝑗

𝑐𝑖𝑐 𝑗

For any 𝑖 ≠ 𝑗 , we can bound

𝑐𝑖𝑐 𝑗 ≤ 𝑐𝑖𝑐 𝑗

( |𝜇𝑖 − 𝜇 𝑗 |
Δ

)𝑡
≤ 𝑐𝑖𝑐 𝑗

( |𝜇𝑖 − 𝜇 | + |𝜇 𝑗 − 𝜇 |
Δ

)𝑡
≤ 2𝑡

Δ𝑡
𝑐𝑖𝑐 𝑗

(
(𝜇𝑖 − 𝜇)𝑡 + (𝜇 𝑗 − 𝜇)𝑡

)
In the last line, we use again the inequality (𝑎 + 𝑏)𝑡 ≤ 2𝑡 (𝑎𝑡 + 𝑏𝑡 ) Since |𝜇𝑖 − 𝜇 | ≤ 𝑂 (

√
𝑡)𝑐−1/𝑡

𝑖
and similarly for 𝑗 ,

so
𝑐𝑖𝑐 𝑗 ≤ 𝑂 (𝑡)𝑡/2/Δ𝑡 .

Then ∑
𝑗 𝑐

2
𝑗 = 1 − 𝑜 (1), completing the proof. □
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1.3 Objective function
If �̃� was actually a uniform distribution over components (i.e. 𝑎𝑖 = 1[𝑖 ∈ 𝑆 𝑗 ]), then

�̃�[𝑎𝑎𝑇 ] = 𝔼𝑗 [𝑎 ( 𝑗 ) (𝑎 ( 𝑗 ) )⊤]

Thus we want to “maximise entropy” i.e. be agnostic towards which component is picked out by the SoS
program. A good objective that does this is

min
�̃�

∥�̃�[𝑎𝑎⊤] ∥2𝐹 .

We will explain why this maximises entropy and give the full algorithm next lecture.
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