
CS 2243 Fall 2024 Scribes: <names>
09/23 Based on notes by: Kevin Du

Lecture 6: SoS and robust regression

1 Sum-Of-Squares Introduction
The sum-of-squares algorithm (SoS) is a generic framework that can be applied to a wide variety of nonconvex
optimization problems, similar to linear programming for linear applications. This SoS framework can convert an
inefficient algorithm with a “simple” proof of correctness, i.e. a proof involving a restricted set of convex axioms,
into an efficient algorithm with the same guarantees.

SoS is used in a wide variety of statistical algorithms and gives an elegant framework for robust estimation in
the presence of corrupted data.

2 Robust Regression Introduction
As an example use case of the SoS algorithm, consider a robust regression setting in which we aim to perform
linear regression on arbitrarily corrupted data. Intuitively, we think of an adversary who has access to our dataset
and alters a fraction 𝜂 of the data to make our regression algorithm fail.

Specifically, we are given a corrupted dataset (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 with corruption fraction 𝜂. The structure of this data is
given as follows. The explanatory data is given by

(𝑥∗𝑖 , 𝑦∗𝑖 , 𝑎∗𝑖)𝑁𝑖=1
with 𝑦∗𝑖 = ⟨𝑤, 𝑥∗𝑖 ⟩ + 𝜁𝑖

| |𝑥𝑖 | | ≤ 1
| |𝑤 | | ≤ 𝑅

𝜁𝑖 ∼ N (0, 𝜎2)
𝑎∗𝑖 ∈ {0, 1}∑︁

𝑎∗𝑖 ≥ 𝑁 (1 − 𝜂)
𝑎∗𝑖 = 1 =⇒ (𝑥𝑖 , 𝑦𝑖) = (𝑥∗𝑖 , 𝑦∗𝑖) .

We only observe the dataset (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1 We aim to find

argmin
𝑤

1
𝑁

∑︁
𝑎∗𝑖 (𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩)2.

Here 𝑎𝑖 is an indicator variable with 𝑎∗𝑖 = 1 if the data point is clean and 𝑎∗𝑖 = 0 if it is corrupted. The expression
we want to minimize then is the clean MSE, i.e. the MSE over the uncorrupted data.

2.1 Initial Approaches
When analyzing different robust regression approaches, we will compare their performance against the optimal
baseline

𝑂𝑃𝑇 =
1
𝑁

∑︁
𝑎∗𝑖 (𝑦𝑖 − ⟨𝑤∗, 𝑥𝑖⟩)2

which is the clean MSE obtained if we know which points are corrupted, i.e. if the 𝑎𝑖 variables were all given
to us. The aim is to find an algorithm which has a clean MSE that is close to “OPT” for small values of 𝜂.

1

If we simply run oridinary least squares regression on the given dataset, the clean MSE we achieve is “OPT” +
𝑂 (𝜂𝑅2). This gives a naive upper bound on the achievable clean MSE. A lower bound on the clean MSE is given
by the information-theoretic bound “OPT” + 𝑂 (𝜂2𝜎2).

One may think to use regularization or choose a less sensitive loss function in order to minimize the effect of
outliers caused by corrupted data. For instance, statistician Peter J. Huber proposed using the Huber loss function,
which grows linearly with respect to the magnitude of the error at the tails and quadratically near the origin.

However, Chen, Koehler, Moitra, and Yau recently showed that

Theorem 1. Any algorithm based on minimizing a convex loss gets clean MSE 𝜂3𝑅 [?].

Thus, these approaches can not be made to achieve the information-theoretic lower bound.
Note that any algorithm can be made to perform poorly when 𝜂 ≥ 1/2. This is because if there are more

corrupted data points than clean data points, an adversary could change many of the data points to match some
other parameter 𝑤 ′. Then, no algorithm could tell the clean dataset apart from the fictitious ones generated by
𝑤 ′. However, the focus moving forward will be on cases with small values of 𝜂.

3 SoS for Robust Regression

The SoS framework gives an algorithm for robust regression which achieves a clean MSE of (1+𝑂 (𝐶𝜂1/2)) (𝑂𝑃𝑇 +
𝑂 (𝐶𝜂1/2𝜎2) and performs well in practice for distributions with low hypercontractivity constant. To achieve this
performance, we first give an inefficient algorithm that finds a low-MSE solution.

We model the problem as an optimization problem with a system of polynomial constraints.

Variables

1. 𝑤 - estimate of 𝑤∗

2. 𝑎1, . . . , 𝑎𝑁

Constraints

1. 𝑎2𝑖 = 𝑎𝑖 for all 𝑖

2. 1
𝑁

∑
𝑎𝑖 ≥ 1 − 𝜂

Objective

min
𝑤

1
𝑁
𝑎𝑖 (𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩)2

Table 1: A polynomial optimization problem which models robust linear regression

Solving the regression problem then reduces to solving the polynomial optimization problem above. Unfortunately,
polynomial optimization problems are nonconvex and in general NP-hard. However, we can define a convex
relaxation of the problem which becomes tractable through the SoS framework.

3.1 Pseudodistributions
Instead of optimizing over 𝑎𝑖 and𝑤 we optimize over distributions of this quantities. More specifically, we optimize
over pseudo-distributions, objects which behave like distributions in that we can take pseudo-expectations of these
quantities.

Definition 1. A degree-𝑡 pseudo-distribution is given by the pseudo-expectation operator �̃� which takes as input a
polynomial in the variables 𝑎1, . . . , 𝑎𝑁 ,𝑤1, . . . ,𝑤𝑑 with degree ≤ 𝑑 and outputs a number. This operator must satisfy:

2

Prop. 1. �̃�[1] = 1

Prop. 2. �̃�[𝛼𝑝 + 𝛽𝑞] = 𝛼 �̃�[𝑝] + 𝛽 �̃�[𝑞]

Prop. 3. �̃�[𝑝2] ≥ 0 for all polynomials 𝑝 with degree ≤ 𝑡/2

Note that the space of pseudo-distributions is a finite-dimensional object spanned by pseudo-expectations
of monomials such as �̃�[𝑎53𝑎62𝑤5]. Furthermore, the set of pseudo-expectations is convex due to property 3 in
Definition 3.1. This concept of the pseudo-distribution will allow us to convert the robust regression problem into
a convex optimization problem.

3.2 Including Program Constraints

In order to include the constraints of our polynomial optimization problem, we add another property that �̃� must
satisfy:

Prop. 4. If there is a “simple”, i.e. degree-𝑡 , proof that 𝑝 ≥ 0 using the problem constraints, then �̃�[𝑝] ≥ 0.

Here, a degree-𝑡 proof of a statement is one which uses only polynomials of degree ≤ 𝑡 and the fact that sums
of squares are nonnegative, i.e.

∑
𝑥2
𝑖 ≥ 0. More precisely, a proof is a chain of inequalities with each one derived

from the preceding ones by the following derivation:

𝑝 (𝑥) ≥ 0, 𝑞(𝑥) = 0 =⇒ 𝑆𝑂𝑆1(𝑥) + 𝑝 (𝑥) · 𝑆𝑂𝑆2(𝑥) + 𝑞(𝑥) · 𝑟 (𝑥) ≥ 0

for any 𝑆𝑂𝑆1, 𝑆𝑂𝑆2 which are sums of squares of polynomials. Note that this property stipulates a convex
constraint on �̃�. Thus, we aim to find an instance of 𝔼 that satisfies these convex constraints. Note that a solution
always exist as the true objective is feasible under the SoS program. Thus, we can use various convex optimization
algorithms such as the ellipsoid method to find a solution instance.

3.3 Examples
We examine a couple examples of conditions we can derive under the SoS framework.

Example 1. From the constraint 𝑎2𝑖 = 𝑎𝑖 , there is a simple proof that 0 ≤ 𝑎𝑖 ≤ 1.

Proof. Note that 𝑎𝑖 = 𝑎2𝑖 ≥ 0. Also, we have (1 − 𝑎𝑖)2 = 1 − 𝑎𝑖 − (𝑎2𝑖 − 𝑎𝑖) ≥ 0 =⇒ 1 − 𝑎𝑖 ≥ 0 =⇒ 𝑎𝑖 ≤ 1. □

Note that we can not prove that 𝑎𝑖 ∈ {0, 1} in the SoS system. However, since we’ve shown that 0 ≤ 𝑎𝑖 ≤ 1,
we know that the SoS program must have 0 ≤ �̃�[𝑎𝑖] ≤ 1 for any degree-2 pseudo-expectation.

Example 2 (Cauchy-Schwartz). If 𝑢𝑖 and 𝑣𝑖 are variables, then there is a simple proof that

(
∑︁
𝑖

𝑢𝑖𝑣𝑖)2 ≤ (
∑︁
𝑖

𝑢2
𝑖) (

∑︁
𝑖

𝑣2𝑖) .

Proof. We have

(
∑︁
𝑖

𝑢2
𝑖) (

∑︁
𝑖

𝑣2𝑖) − (
∑︁
𝑖

𝑢𝑖𝑣𝑖)2 =
∑︁
𝑖, 𝑗

(𝑢𝑖𝑣 𝑗 − 𝑢 𝑗𝑣𝑖)2 ≥ 0

□

3.4 Reading Off the Objective

Note that the objective is to find parameters 𝑤 which minimize the clean MSE. Note that by the convexity of �̃�,
we have

Lemma 1.
∑

𝑖 𝑎
∗
𝑖 (𝑦𝑖 − ⟨�̃�[𝑤], 𝑥𝑖⟩)2 ≤ ∑

𝑖 𝑎
∗
𝑖 �̃�[(𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩)2]

If we can bound the right hand side of the above equation, we know that �̃�[𝑤] achieves a low clean MSE.

3

3.5 Bounding Clean MSE of the SoS Output

Suppose �̃� is a solution to the convex constraints described above. Then, we aim to bound the clean MSE of the
solution vector �̃�[𝑤]. As seen above, we have

1
𝑁

∑︁
𝑖

𝑎∗𝑖 (𝑦𝑖 − ⟨�̃�[𝑤], 𝑥𝑖⟩)2 ≤ 1
𝑁

∑︁
𝑖

𝑎∗𝑖 �̃�[(𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩)2] ≤
1
𝑁

∑︁
𝑖

�̃�[(𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩)2] (*)

To bound this quantity, we decompose the cases under the following substitution

1 = 𝑎𝑖𝑎
∗
𝑖 + 𝑎𝑖 (1 − 𝑎∗𝑖) + (1 − 𝑎𝑖) .

Here, 𝑎𝑖𝑎∗𝑖 represents cases where we correctly identified the clean data as clean. 𝑎𝑖 (1 − 𝑎∗𝑖) are cases where
we incorrectly identified corrupted data as clean. 1 − 𝑎𝑖 are cases where we identified data as corrupted. Then,
we can write (*) as

(∗) = 1
𝑁

∑︁
𝑖

𝑎𝑖𝑎
∗
𝑖 (𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 (1)

+ 1
𝑁

∑︁
𝑖

𝑎𝑖 (1 − 𝑎∗𝑖) (𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 (2)

+ 1
𝑁

∑︁
𝑖

(1 − 𝑎𝑖) (𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 (3)

We can bound each of these terms as follows. First,

(1) = 1
𝑁

∑︁
𝑖

𝑎𝑖𝑎
∗
𝑖 (𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩)2

≤ 1
𝑁

∑︁
𝑖

𝑎𝑖 (𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩)2

≤ 1
𝑁

∑︁
𝑖

𝑎∗𝑖 (𝑦∗𝑖 − ⟨𝑤∗, 𝑥∗𝑖 ⟩)2 ≤ 𝑂𝑃𝑇

To bound the second term, we use the Cauchy Schwarz bound to get

(2) = 1
𝑁

∑︁
𝑖

𝑎𝑖 (1 − 𝑎∗𝑖) (𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2

≤
(
1
𝑁

∑︁
𝑖

(1 − 𝑎∗𝑖)2
)1/2

·
(
1
𝑁

∑︁
𝑖

𝑎2𝑖 (𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)4
)1/2

≤ 𝜂1/2

(
1
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)4
)1/2

Similarly, we get

4

(3) = 1
𝑁

∑︁
𝑖

(1 − 𝑎𝑖) (𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2

≤
(
1
𝑁

∑︁
𝑖

(1 − 𝑎𝑖)2
)1/2

·
(
1
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)4
)1/2

≤ 𝜂1/2

(
1
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)4
)1/2

To bound the quantity 1
𝑁

∑
𝑖 (𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)4, recall that 𝑦∗𝑖 = ⟨𝑤∗, 𝑥∗𝑖 ⟩ + 𝜁𝑖 where 𝜁𝑖 ∼ N (0, 𝜎2). Then, we have

1
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)4 =
1
𝑁

∑︁
𝑖

(⟨𝑤∗ −𝑤, 𝑥∗𝑖 ⟩ + 𝜁𝑖)4.

By the elementary inequality (𝑎 + 𝑏)4 ≤ 8(𝑎4 + 𝑏4), we can bound the above expression by

8
𝑁

∑︁
𝑖

⟨𝑤∗ −𝑤, 𝑥∗𝑖 ⟩4 +
8
𝑁

∑︁
𝑖

𝜁 4𝑖 .

Note that in expectation 8𝔼[𝜁 4
𝑖
] = 24𝜎4. To summarize, we have shown that

(∗) = (1) + (2) + (3)

≤ 𝑂𝑃𝑇 + 2𝜂1/2

(
1
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)4
)1/2

≤ 𝑂𝑃𝑇 + 2𝜂1/2

(
8
𝑁

∑︁
𝑖

⟨𝑤∗ −𝑤, 𝑥∗𝑖 ⟩4 +𝑂 (𝜎4)
)1/2

≤ 𝑂𝑃𝑇 +𝑂 (𝜂1/2)

(
1
𝑁

∑︁
𝑖

⟨𝑤∗ −𝑤, 𝑥∗𝑖 ⟩4
)1/2

+ 𝜎2

Note that that last inequality is true when 𝜎4 and
∑

𝑖 ⟨𝑤∗ −𝑤, 𝑥∗𝑖 ⟩4 are roughly proportional. This is usually
the case practically so we will assume this is true going forward. However, we note that the rigorous inequality is
in fact

((∗) −𝑂𝑃𝑇)2 ≤ 𝑂 (𝜂)
[
1
𝑁

∑︁
𝑖

⟨𝑤∗ −𝑤, 𝑥∗𝑖 ⟩4 + 𝜎4

]
Finally, to bound the value 1

𝑁

∑
𝑖 ⟨𝑤∗ −𝑤, 𝑥∗𝑖 ⟩4, we will need an assumption on the distribution.

Definition 2. A distribution 𝑞 is 4-hypercontractive if

𝔼𝑥∼𝑞 [⟨𝑣, 𝑥⟩4] ≤ (𝐶 · 𝔼𝑥∼𝑞 [⟨𝑣, 𝑥⟩2])2 (**)

for all 𝑣 ∈ ℝ𝑑 for some 𝐶 = 𝑂 (1). 𝑞 is certifiably 4-hypercontractive if (**) has an SoS proof.

For instance, any rotation of a product distribution (e.g. N (𝜇, Σ)) is certifiably 4-hypercontractive.
In our case, we can assume that the distribution of 𝑥 is 4-hypercontractive meaning

5

(
1
𝑁

∑︁
𝑖

⟨𝑤∗ −𝑤, 𝑥𝑖⟩4
)1/2

≤ 𝐶

𝑁

∑︁
𝑖

⟨𝑤∗ −𝑤, 𝑥𝑖⟩2

=
𝐶

𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝜁𝑖)2

≤ 2𝐶
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 +
2𝐶
𝑁

∑︁
𝑖

𝜁 2𝑖

≤ 2𝐶
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 +𝑂 (𝐶𝜎2)

Thus, we have shown that

1
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 = (∗) ≤ 𝑂𝑃𝑇 +𝑂 (𝜂1/2)
[
2𝐶
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 +𝑂 (𝐶𝜎2)
]

Note that the term on the left hand side appears on the right hand side as well. Thus, rearranging, we get

(1 −𝑂 (𝐶𝜂1/2) 1
𝑁

∑︁
𝑖

(𝑦∗𝑖 − ⟨𝑤, 𝑥∗𝑖 ⟩)2 ≤ 𝑂𝑃𝑇 +𝑂 (𝐶𝜂1/2𝜎2)

Putting this all together, if 𝐶𝜂1/2 is sufficiently small, we have

Clean MSE ≤ (∗) ≤ (1 +𝑂 (𝐶𝜂1/2)) (𝑂𝑃𝑇 +𝑂 (𝐶𝜂1/2𝜎2))
We have thus shown that under some mild assumptions about the problem distribution such as the certifiable

4-hypercontractivity of 𝑥 , the clean MSE obtained from a solution found using the SoS program achieves an MSE
bounded by the expression above.

References

6

	Sum-Of-Squares Introduction
	Robust Regression Introduction
	Initial Approaches

	SoS for Robust Regression
	Pseudodistributions
	Including Program Constraints
	Examples
	Reading Off the Objective
	Bounding Clean MSE of the SoS Output

