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Lecture 4: Smoothed analysis and overcomplete tensors

1 Introduction
In last lecture, we showed that Jennrich’s algorithm is not very noise-robust. Furthermore, for a tensor𝑇 =

∑𝑘
𝑖=1𝑢

⊗3
𝑖

,
𝑢𝑖 ∈ ℝ𝑑×𝑑×𝑑 , Jennrich’s requires the assumption that the 𝑢𝑖 vectors are linearly independent. This means that
𝑘 ≤ 𝑑. However, in the last lecture, we saw examples in which 𝑘 > 𝑑 (called the “overcomplete setting”) but
Jennrich’s still succeeds, to an extent (when 𝑘 is very large it eventually fails). Theoretically speaking, Jennrich’s
algorithm cannot handle cases in which 𝑘 > 𝑑.

This lecture examines the case in which 𝑘 ≫ 𝑑 by using higher-order tensors.

2 Example
This example will illustrate that looking at higher-order tensors can allow to access higher-order tensors.

Consider 𝑞 =
∑𝑘

𝑖=1 𝜆𝑖N (𝜇𝑖 , 𝐼 ), where 𝐼 is the identity matrix and N refers to the normal distribution. If 𝑥 ∼ 𝑞

then the following holds (refer to Lecture 2 for details):

𝔼[𝑥⊗3] =
𝑘∑︁
𝑖=1

𝜆𝑖𝜇
⊗3
𝑖 + (

𝑘∑︁
𝑖=1

𝜆𝑖𝜇𝑖)⊗3𝐼 .

Here, we can recover 𝜇𝑖 for all 𝑖 as long as they are all linearly independent via Jennrich’s algorithm.
Suppose we instead consider 𝔼[𝑥⊗4]:

𝔼[𝑥⊗4] =
𝑘∑︁
𝑖=1

𝜆𝑖𝔼
[
(𝜇𝑖 + 𝑔)4

]
(𝑔 drawn according to N (0, 𝐼 ))

=

𝑘∑︁
𝑖=1

𝜆𝑖𝜇
⊗4
𝑖 +

𝑘∑︁
𝑖=1

𝜆𝑖𝜇
⊗2
𝑖 ⊗4𝐼 +

𝑘∑︁
𝑖=1

𝜆𝑖𝔼[𝑔⊗4]

Now, instead of having a third order tensor as the first term, we have a fourth order tensor. Suppose we have
𝑇 =

∑𝑘
𝑖=1𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 ⊗ 𝑢𝑖 . Recall the function vec: ℝ𝑑×𝑑 → ℝ𝑑2

which takes in a matrix and turns it into a
vector. Then we may define 𝑇 ′ as follows: 𝑇 ′ =

∑𝑘
𝑖=1 𝜆𝑖vec(𝑢𝑖 ⊗ 𝑢𝑖) ⊗ vec(𝑢𝑖 ⊗ 𝑢𝑖) ⊗ 𝑢𝑖 .

𝑇 ′ is a third-order tensor, and one can apply Jennrich’s to recover the tensor decomposition as long as it holds
that {vec(𝑢𝑖 ⊗ 𝑢𝑖)}𝑘𝑖=1 is a linearly independent set. From Lecture 2, we know that this is implied if {𝑢𝑖 }𝑘𝑖=1 is a
linearly independent set. However, we explore whether Jennrich’s can be applied to 𝑇 ′ even if the set {𝑢𝑖 }𝑘𝑖=1 is
not linearly independent, since {vec(𝑢𝑖 ⊗ 𝑢𝑖)}𝑘𝑖=1 is a set of dimension 𝑑2 dimension.

To summarize this example: We explore whether one can alter the decomposition of a tensor 𝑇 which is
higher-order, using the vec function. We hope that even if the 𝑢𝑖 are not linearly independent, using the vec
function will create a linearly independent set, meaning that we could use Jennrich’s when 𝑘 is on the order 𝑑2.

2.1 Counterexample
This counter example shows that we cannot go past 𝑘 > 𝑂 (𝑑). Suppose 𝑘 = 2𝑑, and let {𝑎𝑖 }𝑑𝑖=1, {𝑏𝑖 }𝑑𝑖=1 be two
orthonormal basis inℝ𝑑 . Then consider the set of vectors {𝑢𝑖 }2𝑑𝑖=1 = {𝑎1, . . . , 𝑎𝑑 , 𝑏1, . . . , 𝑏𝑑 }. Clearly this is a linearly
dependent set of vectors. Furthermore, we make the following claim:

Claim 1. The set 𝑉 = {vec(𝑢𝑖 ⊗ 𝑢𝑖)}2𝑑𝑖=1 are linearly dependent.
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Figure 1: This figure attempts to illustrate the “landscape of difficulty” of a problem over problem instances.
The 𝑥,𝑦 planes simplify the notion of different parameters of the underlying problem instance, and the 𝑧 axis
represents “hardness”.

Proof. Because {𝑎𝑖 }𝑑𝑖=1 is an orthonormal basis, we know that

𝑑∑︁
𝑖=1

𝑎𝑖𝑎
⊤
𝑖 =

𝑑∑︁
𝑖=1

𝑎𝑖 ⊗ 𝑎𝑖 = 𝐼 .

Furthermore, the same holds for orthonormal basis {𝑏𝑖 }𝑑𝑖=1:

𝑑∑︁
𝑖=1

𝑏𝑖 ⊗ 𝑏𝑖 = 𝐼 .

This shows that

𝑑∑︁
𝑖=1

𝑎𝑖 ⊗ 𝑎𝑖 =

𝑑∑︁
𝑖=1

𝑏𝑖 ⊗ 𝑏𝑖 =⇒
𝑑∑︁
𝑖=1

vec(𝑎𝑖 ⊗ 𝑎𝑖) =
𝑑∑︁
𝑖=1

vec(𝑏𝑖 ⊗ 𝑏𝑖)

=⇒ ∃𝑆 ⊂ [2𝑑], ∃𝑇 ⊂ [2𝑑], 𝑆 ∩𝑇 = ∅ s. t.
∑︁
𝑖∈𝑆

𝑉𝑖 =
∑︁
𝑖∈𝑇

𝑉𝑖 .

This proves that the set 𝑉 is in fact linearly dependent. As such, this is a valid counter example proving that by
reshaping using the vec function, we do not obtain the desired hope that one could obtain linear independence
and apply Jennrich’s algorithm. □

One should note that in reality, it is not likely that our components are delicately chosen such that they are
the union of two orthonormal basis. In the context of Figure 1, this counterexample could be viewed as one of the
peaks.

3 Beyond Worst-Case Analysis
We introduce the concept of “average case analysis.” An early description of this comes from [Lev86]: “Many
interesting combinatorial problems were found to be NP-complete. Since there is little hope to solve them fast
in the worst case, researchers look for algorithms which are fast just ‘on average’. This matter is sensitive to the
choice of a particular NP-complete problem and a probability distribution of its instances.”

This represents Perspective 1: For any given random problem instance, the probability of it being hard is
small.

Smoothed analysis is a development on top of average case analysis, and was introduced by [ST03], introduced
to analyze typical examples we encounter in reality. This represents Perspective 2: For an arbitrary problem
instance, if we add to it a small amount of noise, the probability that the noised instance is still hard is small.
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4 Smoothed Analysis of Tensor Decomposition
Our model is as follows: 𝜌 > 0 is the smoothing parameter and dictates how much noise we add to each sample,
𝑘 is the number of components, and 𝑙 is the order of the tensor.

Then we receive the problem instance as follows:

1. Nature picks arbitrary vectors {𝑢′
𝑖, 𝑗 } for 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑙].

2. Nature samples 𝑢𝑖, 𝑗 = 𝑢′
𝑖, 𝑗 +

𝜌√
𝑑
· 𝑔𝑖, 𝑗 where 𝑔𝑖, 𝑗 ∼ N (0, 𝐼 ).

3. We observe 𝑇 =
∑𝑘

𝑖=1𝑢𝑖,1 ⊗ · · · ⊗ 𝑢𝑖,𝑙 .

Theorem 1. With prob 1 − 1/superpoly(𝑑) over the randomness of {𝑔𝑖, 𝑗 } we can recover the 𝑢𝑖, 𝑗 for all 𝑖, 𝑗 given 𝑇 ,
if 𝑘 ≤ 0.99𝑑 ⌊ (𝑙−1)/2⌋ [BCMV13].

Going back to the example, suppose we have some tensor𝑇 ′ =
∑

𝑖 vec(𝑢𝑖 ⊗ 𝑣𝑖) ⊗ (𝑤𝑖 ⊗ 𝑥𝑖) ⊗ 𝑦𝑖), we would like to
show that {vec(𝑢𝑖 ⊗ 𝑣𝑖)}𝑘𝑖=1 is robustly linearly independent (due to addition of noise) as well as {vec(𝑤𝑖 ⊗ 𝑥𝑖)}𝑘𝑖=1.
Definition 1. (Khatri-Rao Product) The Khatri-Rao product of𝑈 and𝑉 is:𝑈 ★𝑉 = (vec(𝑢1 ⊗ 𝑣1) · · · vec(𝑢𝑘 ⊗ 𝑣𝑘 ))
where each entry is a column.

Thus we would like to show that 𝑈 ★𝑉 is robustly full-rank, in the sense that its minimum value is not too
small. Specifically, the following theorem is useful:

Theorem 2. In the smoothed analysis setting, with probability at least 1 − 𝑘 exp(−Ω(𝑑)): 𝜎min(𝑈 ★ 𝑉 ) ≥
poly(𝜌, 1/

√
𝑑). [BCMV13, ADM+18]

Proof. Begin with 𝑈 ,𝑉 ∈ ℝ𝑑×𝑘 , which are the worst case matrices. Then the smoothed matrices are:

𝑈 = 𝑈 + 𝜌
√
𝑑
N (0, 𝐼 )𝑑⊗𝑘

𝑉 = 𝑉 + 𝜌
√
𝑑
N (0, 𝐼 )𝑑⊗𝑘

The statement that we prove is that 𝜎min(𝑈 ★𝑉 ) ≥ poly(𝜌2/𝑑3) with high probability. Note that Theorem 2 refers
to 𝑈 ,𝑉 as worst-case matrices.

We first employ a reduction for minimum singular value to leave-one-out distance:

Definition 2. (Leave-one-out distance) For 𝑀 ∈ ℝ𝑛×𝑘 , the leave-one-out distance of 𝑀 , denoted 𝑙 (𝑀), is defined as
𝑙 (𝑀) = min𝑖∈[𝑘 ] | |Π 1

𝑖
𝑀𝑖 | |2. Π 1

𝑖
is the projector to the orthogonal complement of span(𝑀1, . . . , 𝑀𝑖−1, 𝑀𝑖+1, . . . , 𝑀𝑘 ).

Lemma 1. 𝜎min(𝑀) ≥ 1√
𝑘
𝑙 (𝑀).

Proof. Take any 𝑖 ∈ [𝑘]. Without loss of generality, let 𝑖 = 1. Then the following holds:

𝑙 (𝑀) ≤ ||Π1
1
𝑀1 | |2

= min
𝑣∈span(𝑀2,...,𝑀𝑘 )

| |𝑀1 − 𝑣 | |2 (by definition)

= min
®𝜆

| |𝑀1 −
∑︁
𝑖>1

𝜆𝑖𝑀𝑖 | |2 (re-writing explicitly)

≤ ||𝑀1 +
∑︁
𝑖>1

𝑢𝑖

𝑢1
𝑀𝑖 | |2 (Taking 𝜆𝑖 = −𝑢𝑖/𝑢1)

=
1
|𝑢1 |

| |
𝑘∑︁
𝑖=1

𝑢𝑖𝑀𝑖 | |2 (by summing over all 𝑖)

=
1
|𝑢1 |

| |𝑀𝑢 | |2 (by taking 𝑢 to be the minimum singular vector of 𝑀)

=
| |𝑢 | |2
|𝑢1 |

𝜎min(𝑀) (property of minimum singular vector)
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The largest entry in 𝑢 is always at least 1√
𝑘
| |𝑢 | |2. So in general, we can replace 𝑢1 in the last line with the

largest absolute entry in 𝑢 to obtain: 𝑙 (𝑀) ≤
√
𝑘𝜎min(𝑀) =⇒ 1√

𝑘
𝑙 (𝑀) ≤ 𝜎min(𝑀). □

Since we have shown that the minimum singular value of a matrix is lower-bounded by a factor times 𝑙 (𝑀), it
suffices to show that 𝑙 (𝑈 ★𝑉 ) is not too small in order to show that 𝜎min(𝑈 ★𝑉 ) is not too small. In other words,
it suffices to show that ∀𝑖 ∈ [𝑘], | |Π 1

𝑖
(𝑈 ★𝑉 )𝑖 | |2 is not too small.

Note that dim(Π 1
𝑖
) = 𝑑2 − (𝑘 − 1) in this setting because the matrix is in 𝑑2 and there are 𝑘 − 1 columns

which make the span. By assumption, 𝑘 ≤ .99𝑑2. Hence dim(Π 1
𝑖
) ≥ .01𝑑2 = Ω(𝑑2) .

In order to remove some aspect of randomness, we focus on proving a stronger statement: Fix𝑊 ⊂ ℝ𝑑2
such

that dim(𝑊 ) ≥ .01𝑑2. Then | |Π𝑊 (𝑈 ★𝑉 )𝑖 | |2 is not too small for all 𝑖 ∈ [𝑘], with high probability.
We begin with a toy example. Namely, we start with one vector instead of two: Let𝑊 ⊂ ℝ𝑑 , dim(𝑊 ) ≥ .01𝑑.

If 𝑢 ∈ ℝ𝑑 is given by 𝑢 = 𝑢 + 𝜌√
𝑘
𝑔 (𝑔 ∼ N (0, 𝐼 )) then | |Π𝑊𝑢 | |2 is not too small with high probability.

Proof. Let 𝐷 = dim(𝑊 ), 𝐷 ≥ .01𝑑. Let {𝑤1, . . . ,𝑤𝐷 } be an orthonormal basis for𝑊 . Then ⟨𝑔,𝑤1⟩ , . . . , ⟨𝑔,𝑤𝐷⟩
are all independent random variables (by orthogonality of basis).

| |Π𝑊𝑢 | |2 = | | (⟨𝑤1, 𝑢⟩ · · · ⟨𝑤𝐷 , 𝑢⟩) | |2 (𝑊 is an orthonormal basis)

≥ max
𝑗∈[𝐷 ]

��〈𝑤 𝑗 , 𝑢
〉�� ( L2 norm is at least value of largest entry)

Every entry ⟨𝑤𝑖 , 𝑢⟩ can be written as ⟨𝑤𝑖 , 𝑢⟩ + 𝜌√
𝑑
⟨𝑤𝑖 , 𝑔⟩. Recall that all the ⟨𝑤𝑖 , 𝑔⟩ are independent Gaussian

random variables, and because we are taking the dot product of a random Gaussian and a normal vector, the
term 𝜌√

𝑑
⟨𝑤𝑖 , 𝑔⟩ is in fact a random normal variable with mean 0 and variance 𝜌2

𝑑
. Thus, all the dot products

⟨𝑤1, 𝑢⟩ , . . . , ⟨𝑤𝐷 , 𝑢⟩ are independent Gaussians with variance 𝜌2

𝑑
, and they each have some arbitrary mean due

to the arbitrary 𝑢.

Fact 1. (Gaussian anti-concentration). For 𝑔 ∼ N (0, 1) and for any interval 𝐼 ⊂ ℝ of length 𝑡 , Pr[𝑔 ∈ 𝐼 ] ≤ Ω(𝑡).
The proof follows from that the probability of landing in interval 𝐼 is bounded above by some rectangle

of width 𝑡 which contains the area under the curve of the probability density function. By anti-concentration,
Pr[|

〈
𝑤 𝑗 , 𝑢

〉
| ≤ 𝑡

𝜌√
𝑑
] ≤ Ω(𝑡). This implies that Pr[|

〈
𝑤 𝑗 , 𝑢

〉
| ≤ 𝑡

𝜌√
𝑑
,∀𝑗] ≤ exp(−Ω(𝑑)). This shows that with

high probability, | |Π𝑊𝑢 | |2 is at 𝑂 ( 𝜌√
𝑑
). □

The above proof does not generalize to many vectors. Thus we show a proof that does generalize. We pick a
row-echelon basis for𝑊 of the form (★ indicates arbitrary value whose absolute value is upper-bounded by 1)
and without loss of generality, because it exists up to permutation:

𝑤1 = (1,★, . . . ,★)
𝑤2 = (0, 1,★, . . . ,★)
𝑤3 = (0, 0, 1,★, . . . ,★)

...

We reveal
〈
𝑤 𝑗 , 𝑢

〉
in reverse order 𝑗 = 𝐷, 𝐷−1, . . . , 1. That is,we look at ⟨𝑤𝑖 , 𝑢⟩ conditioned on ⟨𝑤𝐷 , 𝑢⟩ , . . . , ⟨𝑤𝑖+1, 𝑢⟩.

⟨𝑤𝑖 , 𝑢⟩ = ⟨𝑤𝑖 , 𝑢⟩ +
𝜌
√
𝑑
⟨𝑤𝑖 , 𝑔⟩

= ⟨𝑤𝑖 , 𝑢⟩ +
𝜌
√
𝑑
(𝑔𝑖 (𝑤𝑖)𝑖 +

∑︁
𝑗>𝑖

𝑔 𝑗 (𝑤𝑖) 𝑗 )

𝑤 𝑗 is arbitrary for 𝑗 > 𝑖 so we can think of
∑

𝑗>𝑖 𝑔 𝑗 (𝑤𝑖) 𝑗 as arbitrary. Hence, 𝑔𝑖 (𝑤𝑖)𝑖 is still independent, even
when conditioned on ⟨𝑤𝑖+1, 𝑢⟩ , . . . , ⟨𝑤𝐷 , 𝑢⟩. Applying anti-concentration, we have that

Pr
[
∀𝑖, | ⟨𝑤𝑖 , 𝑢⟩ | ≤ 𝑂

(
𝜌
√
𝑑

)]
≤ exp(−Ω(𝑑)) .
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In general however, we care about the scenario in which there is | |Π𝑊𝑢 ★ 𝑣 | |2 and𝑊 is a subspace of dimension
𝑑2. This will require a 2 dimensional row-echelon basis (𝑊 (𝑖, 𝑗 ) ) ⊂ ℝ𝑑×𝑑 . We construct𝑊 𝑖, 𝑗 to be a matrix in
ℝ𝑑×𝑑 where

(𝑊 𝑖, 𝑗 )𝑎,𝑏 =


0, if 𝑎 < 𝑖 or 𝑏 < 𝑗

1, if 𝑎 = 𝑖 and 𝑏 = 𝑗

∗, otherwise

High level idea: we can look at the vectors {𝑊 𝑖, 𝑗𝑣} 𝑗 . For every 𝑖, we can extract vector 𝑣𝑖 and look at
〈
𝑣𝑖 , 𝑢

〉
. If

the 𝑣𝑖 are not too different from row-echelon vectors, then we can show that this is not too small.
□
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