
CS 2243 Fall 2024 Scribes: Alvan Arulandu
09/11/2024 Based on notes by: Itai Shapira and Sara Kangaslahti

Lecture 3: Iterative Methods for Tensor Decomposition

1 Jennrich’s Algorithm in Practice
In Lecture 2, we saw tensor decomposition as a powerful tool to reconcile the rotation problem of matrices. Given
rank-𝑘 tensor 𝑇 ∈ ℝ𝑑1×𝑑2×𝑑3 with

𝑇 =

𝑘∑︁
𝑖=1

𝜆𝑖u⊗3
𝑖 ({u𝑖 }𝑘𝑖=1 are linearly independent and 𝜆1 ≥ · · · ≥ 𝜆𝑘 ≥ 0 WLOG)

Jennrich’s algorithm recovers {u𝑖 }𝑘𝑖=1, decomposing 𝑇 into its 𝑘 components. However, Jennrich’s algorithm is
wishful thinking in practice.

1.1 Noise Robustness
From Problem Set 1 Problem 2, we see that for the robust eigendecompositions used in Jennrich’s, 𝜎min(𝑈) ≥
1/poly(𝑑). In the ideal noiseless setting, Jennrich’s works great, but in practice, poor condition number bounds
cause a sharp performance decline for even slight deviations from its low-rank form.

(a) (b)

Figure 1: (a) A comparison between the accuracy in decomposing a 25 × 25 × 25 noised tensor for two
implementations of Jennrich’s algorithm and alternating least squares [Unk21].(b) A plot of the number of
recovered tensor components against a proxy for relative noise strength for various algorithms, Jennrich’s being
SimDiag in cyan [SV17].

We see from Figure 1 that Jennrich’s algorithm accurately recovers all tensor components in the noiseless
setting, but as noising increasing, its performance declines the fastest. As one can imagine, this isn’t great for the
real world.

1.2 Computational Complexity
However, even with control on noise strength, Jennrich’s is hopeless to compute for practical problems, with
time complexity dominated by 𝑂 (𝑑𝜔) matrix multiplication operations and 𝑂 (𝑑𝛼) pseudoinversion calls, where
2 < 𝛼,𝜔 ≤ 3. Of course, 𝑇 itself takes 𝑂 (𝑑3) space, but we can optimize this by only computing contractions
𝑀𝑧 = 𝑇 (:, :, 𝑧) = 𝔼[⟨x, z⟩xx⊤] in𝑂 (𝑑2) time. However, for extended Jennrich’s algorithm on𝑇 =

∑𝑘
𝑖=1𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 ,

computing 𝑤𝑖 requires computing 𝑇𝑖 𝑗𝑘 for various triples which we can do lazily at best in 𝑂 (𝑑3).

1

2 Iterative Methods
Given recent progress in this problem space, practitioners resort to iterative algorithms, primarily Gradient Ascent,
Power Iteration, and Alternating Least Squares, to resolve these robustness and computational challenges. Again,
we assume that𝑇 =

∑𝑘
𝑖=1 𝜆𝑖u

⊗3
𝑖

with {𝑢𝑖 }𝑘𝑖=1 orthonormal, though this can be waived via Section 2.5. From Lecture
2, we have the following polynomial given by contracting 𝑇 .

𝑝 (x) = 𝑇 (x, x, x) =
∑︁
𝑎,𝑏,𝑐

𝑇𝑎𝑏𝑐𝑥𝑎𝑥𝑏𝑥𝑐 =
∑︁
𝑖

𝜆𝑖 ⟨u𝑖 , x⟩3 (1)

As we’ve seen before, many tensor problems including computing eigenvectors for worst case 𝑇 is NP-hard,
but as implied by Problem Set 1 Problem 3, local maximizers of 𝑝 (𝑥) over the unit sphere are exactly {u𝑖 }𝑘𝑖=1. We
can see some intuition by consider 𝑢′ such that ⟨u𝑖 , u′⟩ ≈ 0 ∀𝑖 ∈ [𝑘]. Then,

x = u′ ⇒ 𝑝 (x) =
𝑘∑︁
𝑖=1

𝜆𝑖 ⟨u𝑖 , u′⟩ ≈ 0

x = u𝑗 ⇒ 𝑝 (x) =
𝑘∑︁
𝑖=1

𝜆𝑖 ⟨u𝑖 , u𝑗 ⟩ ⇒ 𝜆𝑖 ≫ 0 (2)

For u = u𝑖 , we see that 𝑝 is large, and for vectors approximately orthogonal to our component vectors, of which is
the majority in high dimensional space, 𝑝 is small. Formally,

{u𝑖 }𝑘𝑖=1 ≈ argmax
∥x∥=1

𝑝 (x) = argmax
∥x∥=1

𝑘∑︁
𝑖=1

𝜆𝑖 ⟨u𝑖 , x⟩3 (3)

We see polynomial optimization ⇔ tensor decomposition, motivating our use of iterative optimizers. It follows
that all three of these iterative algorithms yield a related analysis. Of course, such methods only give a single local
optimum, with our ultimate goal being all local optima.

2.1 Gradient Ascent
Taking our optimization equation in (3), we derive gradient ascent by taking our current x and taking a 𝜂 size
step in the ∇𝑝 (x) direction. If x(𝑡) is our vector after 𝑡 steps, we have the following recurrence which we can
simplify as a contraction by (1).

x(𝑡) = x(𝑡−1) + 𝜂 · ∇𝑝 (x(𝑡−1)) = x(𝑡−1) + 3𝜂 ·𝑇 (:, x(𝑡−1) , x(𝑡−1))
A glaring issue is that ∥x(𝑡) ∥ ≠ 1 as defined above.

2.1.1 Riemannian Gradient Descent

We solve this we could project to our Reimannian constraint surface, the unit sphere ∥x∥ = 1.

x(𝑡) = proj
(
x(𝑡−1) + 3𝜂 ·𝑇 (:, x(𝑡−1) , x(𝑡−1))

)
However, this wastes movement in the tangent direction, which is most relevant to the updated position when
projected on the circle.

Figure 2: Constrained Gradient Step Projection

2

Figure 2 demonstrates this. Projecting the red vector as we’ve done above, skews the effect the tangent
component in relation to the perpendicular component. For example, consider an update primarily away from the
sphere, with a small tangent component. Since we’re constrained to the unit sphere, this component should not
affect x(𝑡) , but the tangent component does greatly! We resolve this by first projecting to the tangent space, and
then to the circle, to isolate this tangent component before making our final update. Formally,

x(𝑡+1) = proj
(
x(𝑡) + 3𝜂 · Π ·𝑇 (:, x(𝑡) , x(𝑡))

)
, Π =

(
Id − x(𝑡) (x(𝑡))𝑇

)
(4)

where Π is the tangent projection operator. Expanding (4), we have the following.

x(𝑡+1) = proj
(
x(𝑡) + 3𝜂 ·

(
𝑇 (:, x(𝑡) , x(𝑡)) − x(𝑡) (x(𝑡))𝑇𝑇 (:, x(𝑡) , x(𝑡))

))
= proj

(
x(𝑡) + 3𝜂 ·

(
𝑇 (:, x(𝑡) , x(𝑡)) − x(𝑡)𝑇 (x(𝑡) , x(𝑡) , x(𝑡))

))
= proj

(
x(𝑡) + 3𝜂 ·

(
𝑇 (:, x(𝑡) , x(𝑡)) − x(𝑡)𝑝 (x(𝑡))

)) (5)

We observe that −x(𝑡)𝑝 (x(𝑡)) effectively cancels the perpendicular component of the step as intended. This is our
final gradient ascent update.

2.2 Tensor Power Method
This form in (5) also motivates our choice of step size 𝜂 giving the following nice cancellation.

𝜂 =
1

3𝑝 (x(𝑡))
⇒ x(𝑡+1) = proj

(
𝑇 (:, x(𝑡) , x(𝑡))

𝑝 (x(𝑡))

)
= proj

(
𝑇 (:, x(𝑡) , x(𝑡))

)
(6)

We call this specific update the tensor power method, a generalization of the matrix power method.

2.2.1 Matrix Power Method

The matrix power method efficiently computes the top eigenvector of a matrix, faster than alternative methods via
characteristic polynomial root solving. Formally, if 𝑇 =

∑𝑘
𝑖=1 𝜆u𝑖u

⊤, the matrix power method iteratively applies 𝑇
to 𝑥 , normalizing the result. In tensor notation, for 𝑥 =

∑𝑘
𝑖=1 𝑐𝑖u𝑖 ,

𝑇x = 𝑇 (:, x) =
𝑘∑︁
𝑖=1

𝜆𝑖𝑐𝑖 · u𝑖 ⇒ proj(𝑇 (:, x)) =
𝑘∑︁
𝑖=1

𝜆𝑖𝑐𝑖(∑
𝑗 𝜆

2
𝑗
𝑐2
𝑗

)1/2 · u𝑖

Notice this transforms the linear combination coefficients of 𝑥 from (𝑐1, . . . , 𝑐𝑘) to proj(𝜆1𝑐1, . . . , 𝜆𝑘𝑐𝑘). WLOG, we
can order 𝜆1 ≥ . . . 𝜆𝑘 . Then, we see that from the projection, the ratio of the 𝑗 -th coefficient to the 1st coefficient
changes by a factor of 𝜆 𝑗/𝜆1 < 1 while the inverse ratio is > 1. Thus, after each projection, the first component is
weighted up while the remaining are weighted down, meaning that after iterative projection, these coefficients
must converge to (1, 0, . . . , 0), implying x → u1 which is the top eigenvector.

2.2.2 Tensor Power Method

For tensor power method, we have an analagous analysis with contraction 𝑇 (:, x, x).

𝑇 (:, x, x) =
𝑘∑︁
𝑖=1

𝜆𝑖 ⟨x, u𝑖⟩2u𝑖 =
𝑘∑︁
𝑖=1

𝜆𝑖𝑐
2
𝑖 u𝑖 ⇒ proj(𝑇 (:, x, x)) = proj

(
𝑘∑︁
𝑖=1

𝜆𝑖𝑐
2
𝑖 u𝑖

)
=

𝑘∑︁
𝑖=1

𝜆𝑖𝑐
2
𝑖∑𝑘

𝑗=1 𝜆
2
𝑗
𝑐4
𝑗

u𝑖

Again, considering the coordinate ratio 𝑟𝑖 = 𝑐𝑖
𝑐1
,

𝑟𝑖 =
𝑐𝑖

𝑐1

step
−−−→

𝜆𝑖𝑐
2
𝑖 /

(∑
𝑗 𝜆

2
𝑗 𝑐

4
𝑗

)1/2
𝜆1𝑐

2
1/

(∑
𝑗 𝜆

2
𝑗
𝑐4
𝑗

)1/2 =
𝜆𝑖𝑐

2
𝑖

𝜆1𝑐
2
1
=

𝜆𝑖𝑐𝑖

𝜆1𝑐1
𝑟𝑖 (7)

3

Unlike the matrix power method, this does not necessarily decay if 𝜆𝑖𝑐𝑖 > 𝜆𝑖𝑐𝑖 . We thus define and suppose
𝜌 < 1 where

𝜌
def
= max

𝑖≠1

𝜆𝑖𝑐𝑖

𝜆1𝑐1
< 1

If 𝜌 < 1, 𝑟𝑖 must decay by (7) for 𝑖 ≠ 1. Further, from the 𝑐2𝑖 , we have the following doubly exponential convergence.

𝑟𝑖 → 𝜌𝑟𝑖 → 𝜌2𝑟𝑖 → 𝜌4𝑟𝑖 → 𝜌4𝑟𝑖 → . . .

While the tensor power method then has faster convergence that the matrix power method, the convergence of
our algorithm depends on 𝜌 < 1, which occurs with probability 1/𝑘 for random initialization. Further, our vector
limit depends on the initialization x, where we converge to 𝑢𝑖∗ where 𝑖∗ = argmax𝑖𝜆𝑖𝑐𝑖 . If this 𝑖∗ is not unique,
then our method has 𝑖∗ = argmax𝑖𝑐𝑖 . With this, we have two strategies for computing the remaining components.

2.2.3 Deflation

For finding the rest of the components, we take û ≈ 𝑢𝑖 to be our converged limit. By (2), we have 𝜆𝑖 = 𝑝 (u𝑖) ≈ 𝑝 (û).
Deflating our tensor of this component,

𝑇 − 𝑝 (û)û⊗3 ≈
∑︁
𝑗≠𝑖

𝜆𝑖u⊗3
𝑖

we can apply tensor power method again to get the next top vector. Repeating this process of deflation and
approximation yields all the components, with error compounding after each successive deflation.

2.3 Clustering
Alternatively, we can randomly initialize x and compute many û. For the x such that 𝑖∗ = 𝑖, we get a û near
u𝑖 . Doing this many times, we build clusters around each u𝑖 and use a clustering algorithm to estimate each
component.

2.4 Alternating Least Squares (ALS)
ALS is a popular technique for simultaneously learning all components, without suffering from deflation issues or
requiring many random runs. We iteratively estimate {u(𝑡)

𝑖
} where 𝑡 is the number of steps, using the following

step rule.

u(𝑡+1)
𝑖

= proj ©«argmin
û𝑖

𝑇 −
𝑘∑︁
𝑖=1

û𝑖 ⊗ u(𝑡)
𝑖

⊗ u(𝑡)
𝑖

2
𝐹

ª®¬ (8)

Since our objective is linear in optimizing variable û𝑖 , this is exactly least-squares regression! While a rigorous
analysis is quite hard, ALS has garnered significant attention for robustness and computational efficiency. In
fact, we can interpret the tensor power method as a rank-1 version of ALS. As we said at the start, such iterative
methods are shockingly related.

Proof. Consider some current iterate û(𝑡)
𝑖

. Then,

argmin
û𝑖

𝑇 −
𝑘∑︁
𝑖=1

û𝑖 ⊗ u(𝑡)
𝑖

⊗ u(𝑡)
𝑖

2
𝐹

= argmin
û𝑖

∑︁
𝑎,𝑏,𝑐

(
𝑇𝑎𝑏𝑐 − (û𝑖)𝑎

(
u(𝑡)
𝑖

)
𝑏

(
u(𝑡)
𝑖

)
𝑐

)2
= argmin

û𝑖

∑︁
𝑎,𝑏,𝑐

(
𝑇 2
𝑎𝑏𝑐

− 2𝑇𝑎𝑏𝑐 (û𝑖)𝑎
(
u(𝑡)
𝑖

)
𝑏

(
u(𝑡)
𝑖

)
𝑐
+ (û𝑖)2𝑎

(
u(𝑡)
𝑖

)2
𝑏

(
u(𝑡)
𝑖

)2
𝑐

)

4

We have that 𝑇 2
𝑎𝑏𝑐

is a constant and u(𝑡)
𝑖

is a previous iterate meaning
∑

𝑏𝑐

(
u(𝑡)
𝑖

)2
𝑏

(
u(𝑡)
𝑖

)2
𝑐
= 1. Simplifying with

contractions,

= argmin
û𝑖

∑︁
𝑎

(
(û𝑖)2𝑎 − 2 (û𝑖)𝑎

∑︁
𝑏,𝑐

𝑇𝑎𝑏𝑐

(
u(𝑡)
𝑖

)
𝑏

(
u(𝑡)
𝑖

)
𝑐

)
= argmin

û𝑖

∑︁
𝑎

(
(û𝑖)2𝑎 −𝑇 (:, 𝑢 (𝑡)

𝑖
, 𝑢

(𝑡)
𝑖

)𝑎
)

We observe that this is minimized for (û𝑖)𝑎 = 𝑇 (:, 𝑢 (𝑡)
𝑖

, 𝑢
(𝑡)
𝑖

)𝑎, meaning

û𝑖 = proj(𝑇 (:, 𝑢 (𝑡)
𝑖

, 𝑢
(𝑡)
𝑖

))

This is equivalent to the tensor power method. □

2.5 Orthogonality and Whitening
At first, our assumption that {u𝑖 }𝑘𝑖=1 orthogonality seems quite unsound, but in many applications, we have access
to both 𝑇 and some matrix 𝑀 of the following form, which allows us to only require linearly independent u𝑖 .

𝑀 =

𝑘∑︁
𝑖=1

𝜆𝑖u𝑖u⊤𝑖

We can waive orthogonality because given𝑀 , we can modify {u𝑖 }𝑘𝑖=1 such that they are orthonormal via a process
called whitening. We first eigendecompose𝑀 = 𝑉𝐷𝑉⊤ with eigenvectors in𝑉 ∈ ℝ𝑑×𝑘 and eigenvalues in diagonal
matrix 𝐷 ∈ ℝ𝑘×𝑘 . We then let𝑊 = 𝑉𝐷−1/2 ∈ ℝ𝑑×𝑘 and ũ𝑖 = 𝜆

1/2
𝑖

𝑊 ⊤u𝑖 such that𝑊 standardizes the data via
the following simplification. Since 𝑉⊤𝑉 = 𝐼 ,

𝑊 ⊤𝑀𝑊 = 𝐷−1/2𝑉⊤𝑉𝐷𝑉⊤𝑉𝐷−1/2 = 𝐷−1/2𝐷𝐷−1/2 = 𝐼

𝑊 ⊤𝑀𝑊 =

𝑘∑︁
𝑖=1

𝜆𝑖 (𝑊 ⊤u𝑖) (𝑊 ⊤u𝑖)⊤ =

𝑘∑︁
𝑖=1

ũ𝑖 ũ⊤𝑖

⇒
𝑘∑︁
𝑖=1

ũ𝑖 ũ⊤𝑖 = 𝐼

This implies that ũ𝑖 are orthogonal. We can then define 𝑇 ′ = 𝑇 (𝑊,𝑊 ,𝑊) ∈ ℝ𝑘×𝑘×𝑘 . Noticing ⟨𝑊 x, u⟩ =

x⊤𝑊 ⊤u𝑖 = 𝜆
−1/2
𝑖

⟨ũ𝑖 , x⟩,

𝑇 ′ (𝑥,𝑦, 𝑧) = 𝑇 (𝑊 x,𝑊 y,𝑊 z) =
𝑘∑︁
𝑖=1

𝜆𝑖 ⟨𝑊 x, u𝑖⟩⟨𝑊 y, u𝑖⟩⟨𝑊 z, u𝑖⟩ =
𝑘∑︁
𝑖=1

𝜆
−1/2
𝑖

⟨ũ𝑖 , x⟩⟨ũ𝑖 , y⟩⟨ũ𝑖 , z⟩

⇒ 𝑇 =

𝑘∑︁
𝑖=1

𝜆𝑖u⊗3
𝑖 , 𝑇 ′ =

𝑘∑︁
𝑖=1

𝜆
−1/2
𝑖

ũ⊗3
𝑖

Notice that we’ve reduced our original tensor problem 𝑇 to an alternate tensor𝑇 ′ which orthonormal ũ𝑖 . Applying
any method to solve 𝑇 ′, we can then map ũ𝑖 → u𝑖 by applying 𝜆−1/2

𝑖
𝐷1/2𝑉⊤ since:

𝜆
−1/2
𝑖

𝐷1/2𝑉⊤ũ𝑖 = 𝜆
−1/2
𝑖

𝐷1/2𝑉⊤𝜆1/2
𝑖

𝑊 ⊤u𝑖 = 𝐷1/2𝑉⊤𝑉𝐷−1/2u𝑖 = u𝑖

This reduces any independent {u}𝑘
𝑖=1 problem to an equivalent orthonormal one, using 𝑀 and one additional

eigendecomposition.

5

2.6 No Whitening
If no such 𝑀 is available, we cannot whiten u𝑖 , making our analysis much harder.

Theorem 1 ([SV17]). Given 𝑇 =
∑𝑘

𝑖=1 u
⊗3
𝑖

for incoherent unit vectors u1, . . . , u𝑘 , i.e., satisfying��⟨u𝑖 , u𝑗 ⟩
�� ≤ 𝑐max ≤

1
𝑘1+𝜖 , (𝑖 ≠ 𝑗)

𝑂 (log𝑘 + log log𝑑) iterations of tensor power method starting from a random initialization yields a vector û that is
𝑂

(
𝑘1/2 max(𝑐max, 1/𝑑)

)
-close to some u𝑖 , with high probability.

Proof. Let’s consider the tensor power method without whitening. Recall our update step.

x(𝑡)
′
= 𝑇 (:, x(𝑡−1) , x(𝑡−1)) =

𝑘∑︁
𝑖=1

𝜆𝑖 ⟨x(𝑡−1) , u𝑖⟩2u𝑖 =
𝑘∑︁
𝑖=1

𝜆𝑖𝑎
2
𝑖,𝑡 ⇒ x𝑡 = proj(x(𝑡) ′) = x(𝑡) ′

∥x(𝑡) ′ ∥

Let 𝑎𝑖,𝑡 = 𝑎𝑖,𝑡/𝑎1,𝑡 . Note that 𝑎, 𝑎 were formerly called 𝑐, 𝑟𝑖 in the orthogonal case. We call the correlation between
two of our vector 𝑐𝑖 𝑗 = ⟨u𝑖 , u𝑗 ⟩. Then, since ∥X(𝑡) ′ ∥ is independent of 𝑗 , we can derive a recursive ratio formula.

𝑎 𝑗,𝑡 =

∑𝑘
𝑖=1 𝑎

2
𝑖,𝑡−1⟨u𝑖 , u𝑗 ⟩
∥X(𝑡) ′ ∥

=
𝑎21,𝑡−1

∑𝑘
𝑖=1 𝑎

2
𝑖,𝑡−1𝑐𝑖 𝑗

∥X(𝑡) ′ ∥
⇒ 𝑎 𝑗,𝑡 =

∑𝑘
𝑖=1 𝑎

2
𝑖,𝑡−1𝑐𝑖, 𝑗∑𝑘

𝑖=1 𝑎
2
𝑖,𝑡−1𝑐𝑖,1

Isolating the 𝑖 = 1 term,

𝑎 𝑗,𝑡 =

(
𝑐1, 𝑗 +

𝑘∑︁
𝑖=2

𝑎2𝑖,𝑡−1𝑐𝑖, 𝑗

)
· 1
1 + ∑𝑘

𝑖=2 𝑎
2
𝑖,𝑡−1𝑐𝑖,1

From the assumption of the theorem, |𝑐𝑖 𝑗 | ≤ 𝑐max ≤ 𝑘−(1+𝜖) for 𝑖 ≠ 𝑗 . Then, ∥∑𝑘
𝑖=2 𝑎

2
𝑖,𝑡−1𝑐𝑖,1∥ ≤ 𝑘𝑐𝑚𝑎𝑥 ≤ 𝑘−𝜖 ≪ 1.

Recall by taylor expansion that 1/(1 + 𝑥) = 1 − 𝑥 + 𝑥2 − · · · ≈ 1 − 𝑥 for small 𝑥 . Approximating,

𝑎 𝑗,𝑡 ≈
(
𝑐1, 𝑗 +

𝑘∑︁
𝑖=2

𝑎2𝑖,𝑡−1𝑐𝑖, 𝑗

) (
1 −

𝑘∑︁
𝑖=2

𝑎2𝑖,𝑡−1𝑐𝑖,1

)
(9)

Lemma 1. We show that max𝑗≠1 |𝑎 𝑗,𝑡 | < 𝛽𝑡 for sequence {𝛽𝑡 }∞𝑡=0 defined recursively:

𝛽𝑡 =

{
max𝑗≠1 |𝑎 𝑗,0 | 𝑡 = 0
𝑐max + 𝛽2

𝑡−1 + 3𝑘𝑐max𝛽
2
𝑡−1

Proof. We aim to bound (9) inductively. By the definition of 𝛽0, the base case is clearly true. Assume the inductive
claim for 𝑡 − 1. For 𝑗 ≠ 1, by triangle inequality and the inductive claim,�����𝑐1, 𝑗 + 𝑘∑︁

𝑖=2
𝑎2𝑖,𝑡−1𝑐𝑖, 𝑗

����� =
�����𝑐1, 𝑗 + 𝑎2𝑗,𝑡−1 +

∑︁
𝑖≠𝑗,1

𝑎2𝑖,𝑡−1𝑐𝑖 𝑗

����� ≤ |𝑐1, 𝑗 | + |𝑎2𝑗,𝑡−1 | +
�����∑︁
𝑖≠𝑗,1

𝑎2𝑖,𝑡−1𝑐𝑖 𝑗

����� ≤ 𝑐max + 𝛽2𝑡−1 + 2𝑘𝑐max𝛽
2
𝑡−1

Then, substituting in (9) and using triangle inequality again with the fact that 𝑐max ≤ 𝑘−(1+𝜖) ≤ 1,

|𝑎 𝑗,𝑡 | ≤ (𝑐max + 𝛽2𝑡−1 + 2𝑘𝑐max𝛽
2
𝑡−1)

(
1 +

����� 𝑘∑︁
𝑖=2

𝑎2𝑖,𝑡−1𝑐𝑖, 𝑗

�����
)
≤ (𝑐max + 𝛽2𝑡−1 + 2𝑘𝑐max𝛽

2
𝑡−1) (1 + 𝑘𝑐max𝛽

2
𝑡−1)

= 𝑐max + 𝛽2𝑡−1 + 𝑘𝑐max(1 + 𝑐max)𝛽2𝑡−1 + 𝑘𝑐max(1 + 𝑘𝑐max)𝛽4𝑡−1
≤ 𝑐max + 𝛽2𝑡−1 + 2𝑘𝑐𝛽2𝑡−1 + 𝑘 (1 + 𝑘)𝛽2𝑡−1𝛽2𝑡−1
= 𝑐max + 𝛽2𝑡−1 + (2𝑐max + (1 + 𝑘)𝛽2𝑡−1) · 𝑘𝛽2𝑡−1
≤ 𝑐max + 𝛽2𝑡−1 + 3𝑘𝑐max𝛽

2
𝑡−1

= 𝛽𝑡

6

Here the last inequality is due to the fact that 𝛽2
𝑡−1 is small such that (1 + 𝑘)𝛽2

𝑡−1 < 𝑐max. We can check this
inductively by bounding 𝛽0 and then observing that 𝛽𝑡 is decreasing in 𝑡 , so we need to show (1 + 𝑘)𝛽20 < 𝑐max.
We defer this shortly and continue having proven the claim. □

It then suffices to analyze the recursive decay of 𝛽𝑡 , reducing an analysis of 𝑘 − 1 quantities to a sole bound.
In the orthogonal case, 𝑐max = 0 meaning 𝛽𝑡 = 𝛽2

𝑡−1 = 𝛽2
𝑡

0 → 0 at a doubly exponential case if 𝛽0 < 1, which
corroborates what we previously found. If 𝑐max > 0, as discussed in the assumption of the proof of Lemma 1, we
need (1 + 𝑘)𝛽20 < 𝑐max which holds if 𝛽0 is sufficiently smaller than 1, 1 − 𝛽0 ≫ 𝑘𝑐max. If 𝑐max ≪ 𝑘−2, it turns
out that this is true with high probability via random initialization [SV17]. Now, to analyze the 𝛽𝑡 recursion, we
break our evolution in three stages: 𝛽𝑡 ≥ 0.1, 0.1 ≥ 𝛽𝑡 ≥

√
𝑚, and 𝛽𝑡 ≤

√
𝑚 where𝑚 = max(𝑐max, 1/𝑑). If this is

true, then for some constant 𝐶 and 𝑘 > 𝐶,

𝛽𝑡 ≥ 0.1 ⇒ 𝑘𝛽2𝑡−1 ≥ 0.1𝑘 ≥ 1 ⇒ 𝑐max ≤ 𝑘𝑐max𝛽
2
𝑡−1 ⇒ 𝛽𝑡 ≤ (1 + 4𝑘𝑐max)𝛽2𝑡−1

Unrolling this bound,

𝛽𝑡 ≤ (1 + 4𝑘𝑐max)
∑𝑡−1

𝑗=0 2𝑗 𝛽2
𝑡

0 = (1 + 4𝑘𝑐max)2
𝑡−1𝛽2

𝑡

0 ≤ (𝛽0(1 + 4𝑘𝑐max))2
𝑡

With high probability, it turns out that 𝛽0 ≤ 1 − 5𝑘𝑐max. Then,

≤ (1 − 𝑘𝑐max − 20𝑘2𝑐2max)2
𝑡 ≤ (1 − 𝑘𝑐max)2

𝑡 ⇒ 𝑡 ≤ log2(log(𝛽0)/log(1 − 𝑘𝑐max)) = log(poly(𝑘)) = 𝑂 (log(𝑘))

This implies that we stay in this regime for log𝑘 iterations. For the next regime, we simply re-index 𝛽0 to when
the first regime ends. Since 𝛽𝑡 ≥

√
𝑚, we have 𝛽𝑡 ≥

√
𝑚 ≥ √

𝑐max. Then,

𝛽𝑡 = (1 + 3𝑘𝑐max)𝛽2𝑡−1 + 𝑐max ≤ (2 + 3𝑘𝑐max)𝛽2𝑡−1 ≤ 3𝛽2𝑡−1 ≤ 32
𝑡−1𝛽2

𝑡

0 ≤ (3𝛽0)2
𝑡 ≤ (0.3)2𝑡

This implies that 𝑡 ≤ 𝑂 (log log 𝛽𝑡) = 𝑂 (log log𝑑). In the final regime, 𝛽𝑡 ≤
√
𝑚 implies the doubly exponential

decay rate as seen before. Putting this all together, 𝑡 = 𝑂 (log𝑘 + log log𝑑) iterations are needed. □

3 Empirical Mysteries
Our theoretical understanding of tensor decomposition algorithms is still limited for large 𝑘, underscoring the
inherent difficulty of non-convex optimization problems such as those in neural networks. Deep learning aside,
we’re still trying to understand tensor power method! Figure 3 shows the behavior of tensor power method for
varying 𝑘. We see that for low 𝑘, tensor power method does very well, as pictured in the high correlation in the
first row of plots. However, at a lower threshold of 𝑘 ≈ 𝑑 non-monotonic behavior emerges, suggesting that the
algorithm is switching its convergence target between tensor components, but past a larger critical threshold of
𝑘 ≈ 𝑑3/2, the performance completely deteriorates.

7

(a) 𝑘 = 400 (b) 𝑘 = 1000 (c) 𝑘 = 2000

(d) 𝑘 = 4000 (e) 𝑘 = 6000 (f) 𝑘 = 8000

(g) 𝑘 = 10000 (h) 𝑘 = 12000 (i) 𝑘 = 15000

Figure 3: A graph of average correlation between algorithm output and the closest original tensor component
against the number of tensor power method iterations. Each plot describes a 𝑑 = 400 setting with varying ranks 𝑘 .
Randomly initialized runs are shown in various colors.

Since each matrix in ℝ𝑑×𝑑 has rank at most 𝑑 , every order-3 tensor in ℝ𝑑×𝑑×𝑑 has at most rank 𝑑2. This means
that as long as 𝑘 ≤ 𝑑2, a unique decomposition exists. However, it is conjectured that for 𝑘 ≤ 𝑂 (𝑑3/2) a random
initialization converges to one component with high probability, but past this threshold, it is strongly believed that
there is a computational polynomial bottleneck [SV17].

8

Figure 4: Success probability of tensor power iteration for varying 𝑘 and 𝑑, with blue regions being high success,
red regions low success, and white regions marking a 𝑘 = 𝑑ℓ/2 threshold.

Figure 4 demonstrates an empirical phase transition of 𝑘 = 𝑑ℓ/2 between high probability convergence and
failure. The authors [WZ23] analyze the ℓ = 4 case in particular, interpreting the white slope of log𝑘 = 2 log𝑑
to suggest success for log𝑘 ≪ 2 log𝑑 and failure when log𝑘 ≫ 2 log𝑑. We also observe that polynomial steps
are required for tensor power method convergence since log 𝑡 scales linearly with log𝑑 near the success/failure
boundary. There is also some work regarding overcomplete tensor decomposition when 𝑘 ≫ 𝑑 which claims that
for slightly better than random initialization, the optimization landscape is benign [GM17].

4 Summary
We see that while Jennrich’s algorithm is theoretically viable, it is generally ill-suited for practical applications,
with iterative methods posing more robust alternatives. There is a strong connection between the behavior of such
local maximizers and tensor decomposition as well as close relations between the iterative methods themselves.
Ultimately, while our existing theory falls short of fully describing empirical behavior, it does set the stage for our
following lecture on provable overcomplete decomposition using a smoothed analysis.

References
[GM17] Rong Ge and Tengyu Ma. On the optimization landscape of tensor decompositions, 2017.

[SV17] Vatsal Sharan and Gregory Valiant. Orthogonalized als: A theoretically principled tensor decomposition
algorithm for practical use. In International Conference on Machine Learning, pages 3095–3104. PMLR,
2017.

[Unk21] Unknown. Will the real jennrich’s algorithm please stand up?, 2021.
https://www.mathsci.ai/post/jennrich/.

[WZ23] Yuchen Wu and Kangjie Zhou. Lower bounds for the convergence of tensor power iteration on random
overcomplete models. In The Thirty Sixth Annual Conference on Learning Theory, pages 3783–3820.
PMLR, 2023.

9

https://www.mathsci.ai/post/jennrich/

	Jennrich's Algorithm in Practice
	Noise Robustness
	Computational Complexity

	Iterative Methods
	Gradient Ascent
	Riemannian Gradient Descent

	Tensor Power Method
	Matrix Power Method
	Tensor Power Method
	Deflation

	Clustering
	Alternating Least Squares (ALS)
	Orthogonality and Whitening
	No Whitening

	Empirical Mysteries
	Summary

