
CS 2243 Fall 2024 Scribe: Sara Fish
September 9 Based on notes by: Kevin Luo, Oam Patel, and Benjamin Schiffer

Lecture 2: Tensor Decomposition, Jenrrich’s Algorithm, and Applications

1 Motivation
This lecture falls under the theme of proving upper bounds. In the first part of this course, we will focus on building
an algorithmic toolkit. Later, we will dive into lower bounds and modeling as well.

1.1 Historical motivation
Today we will study algorithms for factor analysis. For some motivation, we will consider one of its earliest
applications.

Charles Spearman (1863-1945) pioneered factor analysis in psychology. He posited that there are two kinds
of intelligence: “mathematical” and “verbal”. Let’s look at a toy model of this.

Consider 𝑛 students and𝑚 tests. Let 𝑀 be a 𝑛 ×𝑚 matrix comprising of the students’ scores on the tests, so
that student 𝑖 scored 𝑀𝑖 𝑗 on test 𝑗 . To model two different factors influencing students’ test scores, we consider a
rank 2 decomposition of 𝑀 . Specifically, we write 𝑀 ≈ 𝑈𝑉𝑇 , where 𝑈 is a 𝑛 × 2 matrix and 𝑉 is a𝑚 × 2 matrix.
Let 𝑎𝑖 ∈ ℝ2 denote the 𝑖th row of 𝑈 and 𝑏 𝑗 ∈ ℝ2 denote the 𝑗 th row of 𝑉 . Then, for each student 𝑖 and each test
𝑗 , we obtain the (approximate) score by taking the dot product ⟨𝑎𝑖 , 𝑏 𝑗 ⟩.

Now let 𝑢1, 𝑢2 ∈ ℝ𝑛 denote the two columns of 𝑈 , and similarly 𝑣1, 𝑣2 ∈ ℝ𝑚 the two columns of 𝑉 . Then we
can write the low-rank decomposition as a sum of outer products: 𝑀 = 𝑈𝑉𝑇 =

∑𝑘
𝑖=1𝑢𝑖𝑣

𝑇
𝑖 , where 𝑘 is the rank

of the decomposition (in this example 𝑘 = 2). This is an example of factor analysis: we have decomposed the
students’ test scores 𝑀 into two components, 𝑢1𝑣

𝑇
1 and 𝑢2𝑣

𝑇
2 .

However, there is bad news: the decomposition of 𝑀 into 𝑈 and 𝑉 is not uniquely determined. For any
orthogonal matrix 𝑂 , if 𝑀 = 𝑈𝑉𝑇 , then we have 𝑀 = 𝑈𝑉𝑇 as well, for 𝑈 := 𝑈𝑂 and 𝑉 := 𝑉𝑂 . Here is a quick
calculation demonstrating why:

𝑈𝑉𝑇 = 𝑈𝑂 (𝑉𝑂)𝑇 = 𝑈𝑂𝑂𝑇𝑉𝑇 = 𝑈𝑉𝑇 .

This is called the rotation problem. Many workarounds have been proposed. For example, one workaround is
nonnegative matrix factorization, in which we impose the additional constraint that all matrix coefficients are
required to be nonnegative.

In this lecture we will study a different approach that will motivate our study of tensor decomposition.
Recall our low-rank decomposition 𝑀 =

∑𝑘
𝑖=1𝑢𝑖𝑣

𝑇
𝑖 . We can equivalently write this as a sum of tensor products

𝑀 =
∑𝑘

𝑖=1𝑢𝑖 ⊗ 𝑣𝑖 . In other words, we view 𝑀 as a 2-tensor. Suppose we had a third axis of information about
this problem, say, various experimental conditions for all student-test pairs, denoted by 𝑤1, . . . ,𝑤𝑘 . Then our data
could be written as a 3-tensor: 𝑇 =

∑𝑘
𝑖=1𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 . It turns out that, under mild conditions, with this added

dimension, {𝑢𝑖 }𝑘𝑖=1, {𝑣𝑖 }𝑘𝑖=1, and {𝑤𝑖 }𝑘𝑖=1 can be uniquely recovered from 𝑇 .
In other words, the rotation problem is an artifact of two-dimensional space, and disappears when we consider

three or more dimensions.

2 Tensors
Let’s start by giving the definition of a tensor. Order 1 tensors are just vectors and order 2 tensors are just matrices.
For today, we will also work with order 3 tensors.

Definition 1 (Order 3 tensor). An order 3 tensor𝑇 ∈ ℝ𝑟×𝑠×𝑡 is an array of numbers with entries𝑇𝑖 𝑗𝑘 for 𝑖 ∈ [𝑟], 𝑗 ∈
[𝑠], 𝑘 ∈ [𝑡].

There are higher-order analogues of everything we will discuss today, but for simplicity we will focus on order
3 tensors. Next we define the notion of rank for a tensor.

1

Definition 2 (Tensor rank). The rank of an order 3 tensor 𝑇 is the smallest 𝑘 for which 𝑇 admits a decomposition of
the form

𝑇 =

𝑘∑︁
𝑖=1

𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 .

This decomposition of 𝑇 is also called CP decomposition.

For example,𝑇 =
∑𝑘

𝑖=1𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 is a order 3 tensor. Each of the 𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 is a rank 1 tensor. As an exercise,
try showing that if 𝑇 is a 𝑑 × 𝑑 × 𝑑 tensor, then its rank is at most 𝑑2. This is analogous to how the rank of a 𝑑 × 𝑑
matrix is at most 𝑑.

Computational intractability. Many feature of matrices that we take for granted don’t hold for tensors: even
tractability of basic linear algebraic primitives! For example, it is NP-Hard to compute, or even approximate, the
following: best low-rank (or even rank 1) approximation, rank, operator norm, eigenvalues, and eigenvectors
[HL09].

2.1 Tensor decomposition
The following algorithm is attributed to Jennrich, but in fact the history behind the name is murky, [Mat].

Theorem 1 (“Jennrich”). Given 𝑇 ∈ ℝ𝑑×𝑑×𝑑 with a symmetric CP decomposition

𝑇 =

𝑘∑︁
𝑖=1

𝑢⊗3𝑖

for 𝑢1, . . . , 𝑢𝑘 that are linearly independent, there is a poly(𝑑) time algorithm for recovering 𝑢1, . . . , 𝑢𝑘 exactly.

Intuitively, this is saying that low rank tensors can be decomposed if their components are linearly independent.
Note this only works for tensors of sufficiently low rank: we must have 𝑘 ≤ 𝑑 due to the linear independence
condition, while in general, a 𝑑 × 𝑑 × 𝑑 tensor could have rank up to 𝑑2.

This result continues to hold for non-symmetric tensors under slightly looser conditions:

Theorem 2 (“Jennrich”). Given 𝑇 ∈ ℝ𝑑1×𝑑2×𝑑3 of the form

𝑇 =

𝑘∑︁
𝑖=1

𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖

where {𝑢𝑖 }, {𝑣𝑖 }, {𝑤𝑖 } satisfy

1. 𝑢1, . . . , 𝑢𝑘 are linearly independent

2. 𝑣1, . . . , 𝑣𝑘 are linearly independent

3. 𝑑3 ≥ 2 and no two 𝑤𝑖 ,𝑤 𝑗 are collinear (note that 𝑑3 = 1 is the matrix case and hence this restriction makes
sense, also note that the {𝑤𝑖 } need not be linearly independent, but just none can be multiples of another)

then there exists a poly(𝑑) time algorithm to recover {𝑢𝑖 }, {𝑣𝑖 }, {𝑤𝑖 }.

These results show that there is exactly one way of decomposing a low-rank tensor (apart from trivial swap
symmetries). Returning to our original motivation: in Spearman’s setting, the rotation problem would be solved
by measuring the scores under two different experimental conditions (i.e. adding a third axis).

Before we can prove these theorems, we will need to introduce one essential tensor operation: contraction.

2

https://www.mathsci.ai/post/jennrich/

2.2 Tensor contraction
Throughout this section, let 𝑇 ∈ ℝ𝑑1×𝑑2×𝑑3 be given by 𝑇 =

∑𝑘
𝑖=1𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 .

First we introduce the notion of tensor contraction. Below we define contraction for order 3 tensors, but this
naturally extends to higher orders.

Definition 3 (Tensor Contraction). Let 𝑧1 ∈ ℝ𝑑1 , 𝑧2 ∈ ℝ𝑑2 , and 𝑧3 ∈ ℝ𝑑3 . The contraction of 𝑇 ∈ ℝ𝑑1×𝑑2×𝑑3 along
𝑧1, 𝑧2, 𝑧3 is defined as

𝑇 (𝑧1, 𝑧2, 𝑧3) :=
𝑑∑︁

𝑎∈[𝑑1],𝑏∈[𝑑2],𝑐∈[𝑑3]
𝑇𝑎,𝑏,𝑐 (𝑧1)𝑎 (𝑧2)𝑏 (𝑧3)𝑐 .

One way to understand tensor contraction is to think of it as a tensor analogue of computing the quadratic form
of a matrix. Another way to understand tensor contraction is to view it as evaluating a polynomial. Specifically,
we can associated each tensor 𝑇 with a polynomial 𝑝 : ℝ𝑑1×𝑑2×𝑑3 → ℝ given by

𝑝 (𝑧1, 𝑧2, 𝑧3) =
∑︁
𝑎,𝑏,𝑐

𝑇𝑎𝑏𝑐 (𝑧1)𝑎 (𝑧2)𝑏 (𝑧3)𝑐 .

Then the operation of tensor contraction is just evaluating this polynomial. This way of understanding tensor
contraction will be helpful for next lecture,where wewill see an interesting connection between tensor decomposition
and polynomial evaluation. For the purposes of this lecture, it suffices to view tensor contraction as an algebraic
operation.

What we will need for Jennrich’s algorithm will be not just tensor contraction, but partial contraction. Tensor
contraction takes three inputs, and outputs a number. By contrast, partial contraction might output a number,
vector, matrix, or higher order tensor. Today, we will work with partial contractions along a single mode:

Definition 4 (Partial Contraction). The partial contraction, denoted 𝑇 (:, :, 𝑧) : ℝ𝑑3 → ℝ𝑑1×𝑑2 , is given by

𝑇 (:, :, 𝑧)𝑖 𝑗 := 𝑇 (𝑒𝑖 , 𝑒 𝑗 , 𝑧) =
𝑑3∑︁
𝑘=1

𝑇𝑖 𝑗𝑘𝑧𝑘 .

Partial contraction along a single mode is the tensor analogue of matrix-vector multiplication: for a 𝑑 × 𝑑
matrix 𝑀 and 𝑧 ∈ ℝ𝑑 , we have 𝑀 (:, 𝑧) = 𝑀𝑧.

3 Jennrich’s Algorithm and Proof of Correctness

3.1 Jennrich’s algorithm
For a formal description of Jennrich’s algorithm see Algorithm 1. This algorithm, also known as simultaneous
diagonalization, was not actually the algorithm Jennrich proposed (alternating least squares), as discussed here
(also linked in Section 2.1). Instead, this algorithm seems to be drawn from [LRA93].

On a high level, the algorithm uses the same “simultaneous diagonalization” trick as in the matrix pencil
method. We sample two random 𝑧, 𝑧′ ∼ 𝑆𝑑−1 and compute 𝑀𝑧 := 𝑇 (:, :, 𝑧) and 𝑀𝑧′ := 𝑇 (:, :, 𝑧′). If we view 𝑇 as a
bunch of stacked “layers” of matrices, 𝑀𝑧 and 𝑀𝑧′ are taking two randomly weighed linear combinations of these
layers. As in matrix pencil method, our next step is to “divide” these matrices: to consider 𝑀𝑧𝑀

+
𝑧′ and 𝑀+𝑧𝑀𝑧′

(where + denotes pseudoinverse). It turns out (see Lemma 1 for full computation) that the eigenvectors of 𝑀𝑧𝑀
+
𝑧′

give us {𝑢𝑖 }𝑘𝑖=1, and the eigenvectors of (𝑀+𝑧𝑀𝑧′)𝑇 give us {𝑣𝑖 }𝑘𝑖=1. Finally, to obtain {𝑤𝑖 }𝑘𝑖=1, notice that each entry
of the tensor𝑇 is given by𝑇𝑎,𝑏,𝑐 :=

∑𝑑
ℓ=1(𝑢ℓ)𝑎 (𝑣ℓ)𝑏 (𝑤ℓ)𝑐 . So we have 𝑑3 linear constraints and 𝑘𝑑 unknowns (𝑤ℓ)𝑐

for ℓ ∈ [𝑑], 𝑐 ∈ [𝑘]. From these (redundant, and it turns out consistent) constraints we can solve for {𝑤𝑖 }𝑘𝑖=1 (see
Lemma 2 for full computation).

3

https://www.mathsci.ai/post/jennrich/

Algorithm 1: Jennrich(𝑇)

Input: 𝑇 ∈ ℝ𝑑1×𝑑2×𝑑3

Output: Determines {𝑢𝑖 }, {𝑣𝑖 }, {𝑤𝑖 } such that 𝑇 =
∑

𝑖 𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖

1 𝑧, 𝑧′ ←𝑖 .𝑖 .𝑑. Unif (𝑆𝑑−1)
2 𝑀𝑧 ← 𝑇 (:, :, 𝑧)
3 𝑀𝑧′ ← 𝑇 (:, :, 𝑧′)
4 (𝜆𝑖 , 𝑢𝑖)𝑑𝑖=1 ← EigenDecompose(𝑀𝑧𝑀

+
𝑧′)

// 𝐴+ denotes pseudo-inverse; 𝜆𝑖 eigenvalues; 𝑢𝑖 corresponding eigenvectors
5 (𝜇 𝑗 , 𝑣 𝑗)𝑑𝑗=1 ← EigenDecompose((𝑀+𝑧𝑀𝑧′)⊤)

// Match 𝑢𝑖 and 𝑣𝑖 by fact eigenvalues should be reciprocal
6 {(𝑢𝑖 , 𝑣𝑖)}𝑘𝑖=1 ← {(𝑢𝑖 , 𝑣 𝑗) | 𝜆𝑖𝜇 𝑗 = 1} // exactly 𝑘 such pairs

// now we solve for the 𝑤’s with a linear system
7 λ(𝑎,𝑏),𝑐 = (𝑢𝑐)𝑎 (𝑣𝑐)𝑏 // λ← ℝ𝑑1𝑑2×𝑘

8 Tmatrix = reshape(𝑇, (𝑑1𝑑2, 𝑑3)) // Tmatrix ∈ ℝ𝑑1𝑑2×𝑑3

// Let W be the matrix with 𝑤𝑖 as its 𝑖-row, meaning W ∈ ℝ𝑘×𝑑3 and Tmatrix = λW
9 W = λ+Tmatrix

10 return {𝑢𝑖 }𝑘𝑖=1, {𝑣𝑖 }𝑘𝑖=1, {𝑤𝑖 }𝑘𝑖=1

3.2 Proof of Correctness
In this section, we prove the correctness of Jennrich’s algorithm (Algorithm 1).

Lemma 1. In the notation from Algorithm 1,

𝑀𝑧 ·𝑀+𝑧′ = 𝑈𝐷𝑧𝐷
−1
𝑧′ 𝑈

+

and
𝑀+𝑧 ·𝑀𝑧′ = (𝑉⊤)+𝐷𝑧𝐷

−1
𝑧′ 𝑉

⊤.

Proof. First note that

𝑀𝑧 =

𝑘∑︁
𝑖=1
(𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖) (:, :, 𝑧)

=

𝑘∑︁
𝑖=1

𝑢𝑖 ⊗ 𝑣𝑖 · ⟨𝑤𝑖 , 𝑧⟩

= 𝑈𝐷𝑧𝑉
⊤.

Likewise, 𝑀𝑧′ = 𝑈𝐷𝑧′𝑉
⊤, where

𝑈 ∈ ℝ𝑑×𝑘 𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑘]
𝑉 ∈ ℝ𝑑×𝑘 𝑉 = [𝑣1, 𝑣2, . . . , 𝑣𝑘]
𝐷𝑧 ∈ ℝ𝑘×𝑘 𝐷𝑧 = diag(⟨𝑤1, 𝑧⟩, . . . , ⟨𝑤𝑘 , 𝑧⟩)
𝐷𝑧′ ∈ ℝ𝑘×𝑘 𝐷𝑧′ = diag(⟨𝑤1, 𝑧

′⟩, . . . , ⟨𝑤𝑘 , 𝑧
′⟩)

.

Using this representation, we get that

𝑀𝑧 ·𝑀+𝑧′ = 𝑈𝐷𝑧𝑉
⊤(𝑈𝐷𝑧′𝑉

⊤)+

= 𝑈𝐷𝑧𝑉
⊤(𝑉⊤)+𝐷−1𝑧′ 𝑈

+

= 𝑈𝐷𝑧 ((𝑉)+𝑉)⊤𝐷−1𝑧′ 𝑈
+

= 𝑈𝐷𝑧𝐷
−1
𝑧′ 𝑈

+

4

where the final equality comes from the fact that 𝑉 has linearly independent columns1. The same holds for
𝑀+𝑧 ·𝑀𝑧′ by a symmetric argument.

□

Lemma 1 shows that𝑀𝑧𝑀
+
𝑧′ admits a diagonalization, and in particular, its eigenvectors with nonzero eigenvalue

are exactly {𝑢𝑖 }𝑘𝑖=1 (the columns of 𝑈), where 𝑢𝑖 has eigenvalue ⟨𝑤𝑖 ,𝑧⟩
⟨𝑤𝑖 ,𝑧

′ ⟩ . Similarly, Lemma 1 shows that the

eigenvectors with nonzero eigenvalue of (𝑀+𝑧𝑀𝑧′)⊤ are {𝑣𝑖 }𝑘𝑖=1 (the columns of𝑉), where 𝑣𝑖 has eigenvalue
⟨𝑤𝑖 ,𝑧

′ ⟩
⟨𝑤𝑖 ,𝑧⟩ .

Thus, by calculating the eigendecomposition of 𝑀𝑧𝑀
+
𝑧′ and (𝑀+𝑧𝑀𝑧′)⊤, we obtain {𝑢𝑖 }𝑘𝑖=1 and {𝑣𝑖 }𝑘𝑗=1 up to

permutation. We can then pair up them up appropriately by using the fact that the corresponding eigenvalues of
𝑢𝑖 and 𝑣𝑖 are reciprocals of one another. Note that the non collinearity condition of the 𝑤𝑖 necessitates that there
will be no duplicate nonzero eigenvalues.

Now it remains to compute the 𝑤𝑖 . This is done by setting up a linear system. Define vectors 𝜆𝑎𝑏 ∈ ℝ𝑘

componentwise as 𝜆𝑎𝑏𝑖 = (𝑢𝑖)𝑎 (𝑣𝑖)𝑏 . Define the matrix W = [𝑤⊤1 ,𝑤⊤2 , . . . ,𝑤⊤𝑘]
⊤. Now observe that

𝑇𝑎𝑏𝑐︸︷︷︸
known

=

𝑘∑︁
𝑖=1
(𝑢𝑖)𝑎︸︷︷︸
known

(𝑣𝑖)𝑏︸︷︷︸
known

(𝑤𝑖)𝑐︸︷︷︸
unknown

= ⟨𝜆𝑎𝑏,𝑊 (𝑐)⟩, (1)

where𝑊 (𝑐) = ((𝑤1)𝑐 , (𝑤2)𝑐 , . . . , (𝑤𝑘)𝑐) denotes the 𝑐-th column of𝑊 . This is now just some linear system, where
the unknowns are the 𝑤𝑖 .

To see that the solution to Eq. (1) is unique, we will summarize these constraints as a matrix equation. Wrap the
𝜆𝑎𝑏 into a matrix, letting λ ∈ ℝ𝑑1𝑑2×𝑘 have rows which are just the 𝜆𝑎𝑏 . Likewise, reshape𝑇 into Tmatrix ∈ ℝ𝑑1𝑑2×𝑑3 ;
done consistently, this yields Tmatrix = λW.

Note now that left multiplication by λ+ now yields W, provided λ has linearly independent columns, meaning
it has column rank 𝑘. Therefore, if λ has full column rank, then W = λ+Tmatrix. We conclude the proof with a
lemma showing exactly this.

Lemma 2. λ has full column rank.

Proof. Assume otherwise. Note that the 𝑖-th column of λ, denoted λ(𝑖) , is

(𝜆𝑎𝑏𝑖) (𝑎,𝑏) ∈ [𝑑1]×[𝑑2] = ((𝑢𝑖)𝑎 (𝑣𝑖)𝑏) (𝑎,𝑏) ∈ [𝑑1]×[𝑑2],

so λ(𝑖) = vec(𝑢𝑖 ⊗ 𝑣𝑖) = vec(𝑢𝑖𝑣⊤𝑖). Then if there exists some linear dependence among the rows, we have that
there exist some constants 𝑐𝑖 , not all zero, such that

0 =

𝑘∑︁
𝑖=1

𝑐𝑖λ
(𝑖)

=

𝑘∑︁
𝑖=1

𝑐𝑖𝑢𝑖𝑣
⊤
𝑖 .

Since the 𝑢𝑖 are linearly independent, we can find some vector 𝑥 which is orthogonal to 𝑢2, . . . , 𝑢𝑘 , but not 𝑢1.
Then

0 =

𝑘∑︁
𝑖=1

𝑐𝑖𝑥
⊤𝑢𝑖𝑣

⊤
𝑖

= 𝑐1⟨𝑢1, 𝑥⟩𝑣1,

which implies 𝑐1 = 0. We can repeat this for any index, yielding that 𝑐𝑖 = 0 for every 𝑖, and hence no such
dependence exists.

□
1Recall that for A ∈ ℝ𝑛×𝑚 with linearly independent columns we have A+A = I𝑚×𝑚 .

5

4 Applications
In this class, tensor decomposition and Jennrich’s algorithm will be useful when applying the technique of method
of moments. Here is the high-level idea. We are given samples from some unknown distribution 𝑞𝜃 (·) with
parameters 𝜃 . For example, in the previous lecture on Airy disks, we wanted to estimate their centers 𝜇1, . . . , 𝜇𝑘 .
The idea behind method of moments is that we estimate various moments 𝔼𝑥∼𝑞 [𝑝 (𝑥)] for various polynomials 𝑝
(for example 𝑝 could compute the mean, variance, or anything else). This gives us a system of constraints on the
parameters 𝜃 . If this system of constraints has sufficient structure, we can use tensor decomposition to efficiently
solve it.

This method dates back to statistician Karl Pearson. He believed that there were some number of species
of crabs, existing in different relative proportions, each of which possessed some mean characteristics, and his
observations of the crabs on the island were draws from this mixture distribution. He modeled this as a classic
mixture of Gaussians, and wanted to estimate the distribution over the classes, as well as the mean characteristic
of each class. See also this blog post and [Moo].

4.1 Mixture of Gaussians
This section follows the approach in [HK13].

Consider the classic mixture of Gaussians setting. That is, we have unknown means 𝜇1, . . . , 𝜇𝑘 ∈ ℝ𝑑 and scaling
factors 𝜆1, . . . , 𝜆𝑘 ∈ [0, 1] satisfying

∑𝑘
𝑖=1 𝜆𝑖 = 1, we are given i.i.d. samples from 𝑞 =

∑𝑘
𝑖=1 𝜆𝑖N (𝜇𝑖 , Id), and our

goal is to estimate {𝜇𝑖 }, {𝜆𝑖 } up to small errors.
To do so, we will use method of moments and Jennrich’s algorithm. In this case, we will compute two moments.

For our calculations below, we will view samples 𝑥 ∼ 𝑞 as first sampling 𝑖 ∈ [𝑘] with probability 𝜆𝑖 , then sampling
Gaussian noise 𝑔 ∼ N (0, Id), and finally outputting 𝜇𝑖 + 𝑔.

First we compute 𝔼𝑥∼𝑞 [𝑥]:

𝔼[𝑥] =
𝑘∑︁
𝑖=1

𝜆𝑖𝔼[𝜇𝑖 + 𝑔]

=

𝑘∑︁
𝑖=1

𝜆𝑖𝜇𝑖 .

Next we compute 𝔼𝑥∼𝑞 [𝑥⊗3]:

𝔼[𝑥⊗3] =
𝑘∑︁
𝑖=1

𝜆𝑖𝔼
[
(𝜇𝑖 + 𝑔)⊗3

]
=

𝑘∑︁
𝑖=1

𝜆𝑖𝔼
[
𝜇⊗3𝑖 + 𝑔⊗3 + 𝜇𝑖 ⊗ 𝜇𝑖 ⊗ 𝑔 + 𝜇𝑖 ⊗ 𝑔 ⊗ 𝜇𝑖 + 𝑔 ⊗ 𝜇𝑖 ⊗ 𝜇𝑖 + 𝜇𝑖 ⊗ 𝑔 ⊗ 𝑔 + 𝑔 ⊗ 𝑔 ⊗ 𝜇 + 𝑔 ⊗ 𝜇𝑖 ⊗ 𝑔

]
.

Luckily, many of these terms cancel. First, by symmetry of 𝑔,

𝔼[𝑔⊗3] = 𝔼[𝜇𝑖 ⊗ 𝜇𝑖 ⊗ 𝑔] = 𝔼[𝜇𝑖 ⊗ 𝑔 ⊗ 𝜇𝑖] = 𝔼[𝑔 ⊗ 𝜇𝑖 ⊗ 𝜇𝑖] = 0.

Now let’s handle the terms with 𝑔 ⊗ 𝑔. Since 𝑔 is a standard Gaussian, we have 𝔼[𝑔 × 𝑔] = Id. Thus we can write

𝑘∑︁
𝑖=1

𝜆𝑖𝔼[𝜇𝑖 ⊗ 𝑔 ⊗ 𝑔 + 𝑔 ⊗ 𝑔 ⊗ 𝜇𝑖 + 𝑔 ⊗ 𝜇𝑖 ⊗ 𝑔] =
(

𝑘∑︁
𝑖=1

𝜆𝑢𝜇𝑖

)
⊗3 Id = 𝔼[𝑥] ⊗3 Id,

where we define

𝑧 ⊗3 Id :=
𝑑∑︁

𝑎=1
𝑧 ⊗ 𝑒𝑎 ⊗ 𝑒𝑎 + 𝑒𝑎 ⊗ 𝑧 ⊗ 𝑒𝑎 + 𝑒𝑎 ⊗ 𝑒𝑎 ⊗ 𝑧.

6

http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html

Thus, putting everything together, we have

𝔼[𝑥⊗3] =
𝑘∑︁
𝑖=1

𝜆𝑖𝜇
⊗3
𝑖 + 𝔼[𝑥] ⊗3 Id,

and rearranging,

𝔼[𝑥⊗3] − 𝔼[𝑥] ⊗3 Id =

𝑘∑︁
𝑖=1

𝜆𝑖𝜇
⊗3
𝑖 .

We can estimate the LHS via samples. Then, we apply Jennrich’s algorithm, which gives us a decomposition
into components {𝑣𝑖 }𝑘𝑖=1 with 𝑣𝑖 := 𝜆

1/3
𝑖

𝜇⊗3
𝑖

. It remains to compute the 𝜆𝑖 . We set up a linear system to do this.

𝔼[𝑥] =
𝑘∑︁
𝑖=1

𝜆𝑖𝜇𝑖

=

𝑘∑︁
𝑖=1

𝜆
2/3
𝑖

𝑣𝑖

If the 𝜇𝑖 are all linearly independent, then because 𝑘 ≤ 𝑑 (needed to even run Jennrich’s), this system has a
unique solution.

4.2 Mixture of Exponentials
This section follows the approach in [HK15].

Recall in last lecture, we learned how to use the matrix pencil method to recover the centers 𝜇1, . . . , 𝜇𝑘 of Airy
disks, assuming these centers lie in ℝ. Let’s use Jennrich’s algorithm to generalize this to centers in ℝ2.

Fix centers 𝜇1, . . . , 𝜇𝑘 ∈ ℝ2. Recall we are given access to the Fourier transform

𝐺 : 𝜔 → 1
𝑘

𝑘∑︁
𝑗=1

𝑒2𝜋𝑖 ⟨𝜔,𝜇 𝑗 ⟩

for any 𝜔 ∈ ℝ2 with | |𝜔 | | ≤ 1. Our goal is to recover 𝜇1, . . . , 𝜇𝑘 . We can do by applying Jennrich’s algorithm as
follows:

1. Fix some𝑚 ∈ ℕ to be sufficiently large.

2. Sample 𝜔1, ..., 𝜔𝑚 ∈ ℝ2 ∼ 𝐵(0.49) and 𝑣, 𝑣 ′ ∼ 𝕊1. Here, 𝐵(0.49) denotes the 2D ball of radius 0.49 around
the origin.

3. Define 𝑥1 := 0.02 · 𝑣 and 𝑥2 := 0.02 · 𝑣 ′.

4. Define𝑇 ∈ ℝ𝑚×𝑚×2 where𝑇𝑎𝑏𝑐 := 𝐺 (𝜔𝑎 +𝜔𝑏 +𝑥𝑐) for all 𝑎, 𝑏 ∈ [𝑚] and 𝑐 ∈ [2]. (Note: the constants 0.49
and 0.02 from the previous steps are chosen to ensure that the input 𝜔𝑎 + 𝜔𝑏 + 𝑐 into 𝐺 has norm ≤ 1)

5. Define 𝑢𝑖 ∈ ℝ𝑑 and 𝑤𝑖 ∈ ℝ2 such that (𝑢𝑖)𝑎 := 𝑒2𝜋𝑖 ⟨𝑤𝑎,𝜇 𝑗 ⟩ and (𝑤𝑖)𝑐 := 𝑒2𝜋𝑖 ⟨𝑥𝑐 ,𝜇 𝑗 ⟩ for 𝑎 ∈ [𝑑] and 𝑐 ∈ [2].
Then we can write 𝑇𝑎𝑏𝑐 = 1

𝑘

∑𝑘
𝑗=1(𝑢𝑖)𝑎 (𝑢𝑖)𝑏 (𝑤𝑖)𝑐 , so 𝑇 = 1

𝑘

∑𝑘
𝑗=1𝑢𝑖 ⊗ 𝑢𝑖 ⊗𝑤𝑖 .

6. As long as {𝑢𝑖 } are linearly independent and {𝑤𝑖 } are not collinear, we can apply Jennrich’s algorithm to
obtain the {𝑢𝑖 } and {𝑤𝑖 }, which in turn can be used to solve for the centers {𝜇 𝑗 }.

How does this compare to the matrix pencil method? Last time, we applied𝐺 to vectors in a evenly spaced grid,
which gave us structured data, that we formed into two (Hankel) matrices 𝑈𝑈𝑇 and 𝑈𝐷𝑈𝑇 , and we solved for
the centers by taking an eigendecomposition. This time, we are applying 𝐺 to (carefully chosen) random vectors,
forming matrices𝑈𝐷𝑍𝑈

𝑇 and𝑈𝐷𝑍 ′𝑈
𝑇 , and again solving for the centers by taking an eigendecomposition. Thus,

Jennrich’s algorithm can be viewed as a generalization of the matrix pencil method.

7

References
[HK13] Daniel Hsu and Sham M. Kakade. Learning mixtures of spherical gaussians: Moment methods and

spectral decompositions. In Proceedings of the 4th Conference on Innovations in Theoretical Computer
Science, ITCS ’13, page 11–20, New York, NY, USA, 2013. Association for Computing Machinery.

[HK15] Qingqing Huang and Sham M. Kakade. Super-resolution off the grid. CoRR, abs/1509.07943, 2015.

[HL09] Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are NP hard. CoRR, abs/0911.1393,
2009.

[LRA93] S. E. Leurgans, R. T. Ross, and R. B. Abel. A decomposition for three-way arrays. SIAM Journal on
Matrix Analysis and Applications, 14(4):1064–1083, 1993.

[Mat] Will the real jennrich’s algorithm please stand up? https://www.mathsci.ai/post/jennrich/.
Accessed: 2023-09-14.

[Moo] Pearson’s polynomial. http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html.
Accessed: 2023-09-14.

8

https://www.mathsci.ai/post/jennrich/
http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html

	Motivation
	Historical motivation

	Tensors
	Tensor decomposition
	Tensor contraction

	Jennrich's Algorithm and Proof of Correctness
	Jennrich's algorithm
	Proof of Correctness

	Applications
	Mixture of Gaussians
	Mixture of Exponentials

