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Lecture 22: Diffusion models

This is the last lecture of the semester. We will conclude past discussions on Bayesian inference and connect
them to the setting of learning a distribution via diffusion models, a successful approach both empirically and
theoretically. The material is largely adapted from [CCL+23] and references therein.

1 Primer on Diffusion Models
In generative models, one typically seeks to approximate a transport map from S → T where S is some natural
source distribution (Gaussian, uniform, etc.) and T is the target distribution. In the focus of diffusion models, we
will refer to the process T → S as the “Forward Process”, adding noise to data, and the reversed S → T map as
the “Backward Process”, where sampling actually happens.

1.1 Forward Process
Conceptually, denoising diffusion probabilisticmodeling (DDPM) starts with a forward “noising” process characterized
by a stochastic differential equation (SDE). For clarity, we consider the simplest possible choice, which is the
Ornstein-Uhlenbeck (OU) process:

d𝑋𝑡 = −𝑋𝑡 d𝑡 +
√
2 d𝐵𝑡 , 𝑋0 ∼ 𝑞, (1)

where (𝐵𝑡 )𝑡≥0 is a standard Brownian motion in ℝ𝑑 . The OU process is the unique time-homogeneous Markov
process which is also a Gaussian process, with a stationary distribution equal to the standard Gaussian distribution
on ℝ𝑑 . In practice, it is also common to introduce a positive smooth function 𝑔 : ℝ+ → ℝ2 and consider the
time-rescaled OU process

d𝑋𝑡 = −𝑔(𝑡)2𝑋𝑡 d𝑡 +
√
2𝑔(𝑡)d𝐵𝑡 , 𝑋0 ∼ 𝑞,

but we stick with the choice 𝑔 ≡ 1. In fact, it is easy to solve in this case that

Law(𝑋𝑡 ) = Law(𝑒−𝑡𝑋0 +
√
1 − 𝑒−2𝑡𝐺), 𝐺 ∼ N (0, 𝕀𝑑 ) ⊥⊥ 𝑋 .

The forward process has the interpretation of transforming samples from the data distribution 𝑞 into pure noise.
From the well-developed theory of Markov diffusions, one sees that the law converges to a standard Gaussian
exponentially fast in various divergences and metrics such as the 2-Wasserstein metric𝑊2.

1.2 Backward Process
Given the “noising” forward process, one can thus try to invert the forward map and construct the corresponding
“de-noising” process. Conceptually, this reversed process is similar to reversing a Markov Chain with time steps
going to zero. We write down the reverse formula and defer the justification to the next subsection.

In general, suppose that we have an SDE of the form

d𝑋𝑡 = 𝑏𝑡
(
𝑋𝑡

)
d𝑡 + 𝜎𝑡 d𝐵𝑡 ,

where (𝜎𝑡 )𝑡≥0 is a deterministic matrix-valued process. Then the reverse process also admits an SDE description.
Namely, if we fix the terminal time 𝑇 > 0 and set

𝑋←𝑡 := 𝑋𝑇−𝑡 , for 𝑡 ∈ [0,𝑇 ]

then the process
(
𝑋←𝑡

)
𝑡 ∈[0,𝑇 ] satisfies the SDE

d𝑋←𝑡 = 𝑏←𝑡
(
𝑋←𝑡

)
d𝑡 + 𝜎𝑇−𝑡 d𝐵𝑡
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where the backwards drift satisfies the relation

𝑏𝑡 + 𝑏←𝑇−𝑡 = 𝜎𝑡𝜎⊤𝑡 ∇ ln𝑞𝑡 , 𝑞𝑡 := Law
(
𝑋𝑡

)
.

Applying this to the forward process (1), we obtain the reverse process

d𝑋←𝑡 =
{
𝑋←𝑡 + 2∇ ln𝑞𝑇−𝑡

(
𝑋←𝑡

)}
d𝑡 +
√
2 d𝐵𝑡 . (2)

where ∇ ln𝑞𝑇−𝑡
(
𝑋←𝑡

)
is “score”: the gradient of the density at time𝑇 − 𝑡 of the forward (and time 𝑡 of the reverse)

process.
To see why (2) is indeed the reversed SDE of (1), we need to apply the Fokker-Planck equation, which states

that:

Proposition 1 (Fokker-Planck). For any smoothly varying family of smooth vector fields 𝑣𝑡 : ℝ𝑑 → ℝ𝑑 , the iterates
𝑥𝑡 of the SDE:

𝑑𝑥𝑡 = 𝑣𝑡 (𝑥𝑡 ) 𝑑𝑡 +
√
2𝑑𝐵𝑡

are distributed according to 𝑞𝑡 satisfying the PDE

𝜕𝑞𝑡

𝜕𝑡
= − div (𝑞t · 𝑣𝑡 ) + Δ𝑞𝑡 .

We omit the proof in this note, as it can be found in many textbooks of stochastic analysis (e.g., pp. 47-49
of [PB13]). Instead, under Proposition 1, we observe that (1) and (2) are indeed reversals of each other by
pattern-matching the terms.

1.3 Score Matching
Consider the following sampling procedure: pick a large 𝑇 such that 𝑞𝑇 is close to a standard Gaussian, and run
(2) with 𝑋←0 distributed according to N (0, 𝕀𝑑 ). While this is the most natural way to go, the biggest caveat is that
one does not typically know 𝑠𝑡 := ∇ ln𝑞𝑡 without knowing the distribution 𝑞0 a priori. Fortunately, such a score
function can be computed via the below lemma:

Lemma 1 (Tweedie’s Formula). Given 𝑥 = 𝑥 + 𝑒 for 𝑥 ∼ 𝑝 and 𝑒 ∼ N
(
0, 𝜎2 · 𝕀𝑑 ),

𝔼[𝑥 | 𝑥] = 𝑥 + 𝜎2 · ∇ ln 𝑝 (𝑥)

where 𝑝 is the density for 𝑥 .

The above lemma connects the score function to the Bayesian-optimal estimation of the noise. In other words,
estimating the gradient of log density is equivalent to estimating the noise. In practice, one runs the following
optimization over a class of neural nets F given samples {𝑥𝑖 } ∼ 𝜇:

𝑠𝑡 = arg min
NN∈F

1
𝑛

𝑛∑︁
𝑖=1

𝜎−1𝑡 𝑔𝑖 + NN (𝜆𝑡𝑥𝑖 + 𝜎𝑡𝑔𝑖 ; 𝑡)
2
2 , 𝑔𝑖 ∼𝑖𝑖𝑑 N (0, 𝕀𝑑 ) (3)

where NN is a function with input (𝑥, 𝑡) for some explicit scaling of 𝑡 → (𝜆𝑡 , 𝜎𝑡 ) . Under Lemma 1, it is not hard to
check that the minimizing 𝑠𝑡 of (3) is indeed equivalent to ∇ ln𝑞𝑡 for

(
𝜆𝑡 , 𝜎

2
𝑡

)
=
(
𝑒−𝑡 , 1 − 𝑒−2𝑡

)
. This allows us an

optimization form that depends on samples 𝑥𝑖 only and not the distribution 𝜇.

Proof of Lemma 1. By Bayes’ rule,

ℙ[𝑥 | 𝑥] =
1

𝜎
√
2𝜋

exp
(
− (𝑥−𝑥 )

2

2𝜎2

)
· 𝑝 (𝑥)

𝑝 (𝑥)
so

𝔼

[
𝑥 − 𝑥
𝜎2 | 𝑥

]
=

1
𝜎
√
2𝜋

∫ ∞
−∞ exp

(
− (𝑥−𝑥 )

2

2𝜎2

)
· 𝑥−𝑥
𝜎2 · 𝑝 (𝑥)d𝑥

𝑝 (𝑥) .
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Observe that on the other hand

𝑝 (𝑥) =
∫ ∞

−∞
exp

(
− (𝑥 − 𝑥)

2

2𝜎2

)
· 𝑝 (𝑥)d𝑥

∇𝑝 (𝑥) = 1
𝜎
√
2𝜋

∫ ∞

−∞
exp

(
− (𝑥 − 𝑥)

2

2𝜎2

)
· 𝑥 − 𝑥
𝜎2 · 𝑝 (𝑥)d𝑥,

and therefore

𝔼

[
𝑥 − 𝑥
𝜎2 | 𝑥

]
=
∇𝑝 (𝑥)
𝑝 (𝑥) = ∇ ln𝑝 (𝑥)

concluding the proof. □

2 Discretization Analysis
Recall that (3) is a non-convex, over-parameterized optimization task on empirical samples. Whether such
optimization generalizes from {𝑥𝑖 } to 𝜇 usually depends highly on the structure of F (the class of neural nets)
with even less known about whether algorithms like SGD guarantees ERM in the first place. We divert from such
discussions and assume instead access to an oracle 𝑡 → 𝑠𝑡 such that for all 𝑡 :

𝔼𝑞𝑡
[
∥𝑠𝑡 (𝑋𝑡 ) − ∇ ln𝑞𝑡 (𝑋𝑡 )∥2

]
≤ 𝜀2sc (4)

To approximately implement the reverse (2), we first replace the score function ∇ ln𝑞𝑇−𝑡 with the estimate 𝑠𝑇−𝑡 .
Then, for 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] we freeze the value of this coefficient in the SDE at time 𝑘ℎ. It yields the new SDE:

d𝑋←𝑡 =
{
𝑋←𝑡 + 2𝑠𝑇−𝑘ℎ

(
𝑋←
𝑘ℎ

)}
d𝑡 +
√
2 d𝐵𝑡 , 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] . (5)

In this sense, for every 𝑘 , conditioned on 𝑋←
𝑘ℎ

, the next iterate 𝑋←(𝑘+1)ℎ has an explicit Gaussian distribution where
we integrate d𝐵𝑡 directly.

As mentioned before: although the reverse SDE (2) should be started at 𝑞𝑇 , we do not have access to 𝑞𝑇
directly. Instead, we instead initialize the algorithm at 𝑋←0 ∼ N (0, 𝕀𝑑 ), i.e., from pure noise.

Let 𝑝𝑡 := law
(
𝑋←𝑡

)
denote the law of the algorithm at time 𝑡 . The goal of this work is to bound TV (𝑝𝑇 , 𝑞),

taking into account three sources of error: (1) the estimation of the score function; (2) the discretization of the
SDE with step size ℎ > 0; and (3) the initialization of the algorithm at pure noise rather than at 𝑞𝑇 .

2.1 Assumptions
In this lecture, we will assume that our distribution and score estimation satisfy the following fundamental
assumptions.

A1: (Lipschitz score). For all 𝑡 ≥ 0, the score ∇ ln𝑞𝑡 is 𝐿-Lipschitz.

A2: (Second moment bound). We assume that 𝔪2
2 := 𝔼𝑞

[
∥ · ∥2

]
< ∞.

A3: (Estimation error). We assume access to 𝑠𝑡 satisfying (4) with some 𝜀sc > 0.

A1 and A2 are satisfied by most natural distributions and appear in existing works as well (e.g., [LLT22]). It is
worth noting that no assumptions on the Lipschitz-ness of score estimates is required. Intuitively, it may appear as
surprising since one would expect to bound terms like |𝑠 (𝑋 ) − 𝑠 (𝑋 ) | along the way. Here our results can bypass it
without making this sometimes demanding assumption.

Furthermore, we do not assume that 𝑞 satisfies a log-Sobolev inequality. Hence, our assumptions cover a wide
range of highly non-log-concave distributions. Even A1 could be relaxed by considering a different time-change in
(1), although we focus on the simplest setting in order to better illustrate the conceptual significance.

Finally, it is worth noting that we assume the estimation error (4) to be small (𝑜 (1)) in 𝐿2, as opposed to 𝐿∞,
which matches with the optimization objective (3) and more closely reflects the error setting.
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2.2 DDPM Convergence Theorem
Theorem 1 (Theorem 2 in [CCL+23]). Assuming assumptions A1, A2, and A3 hold, Let 𝑝𝑇 be the output of the
DDPM discretization (5) at time 𝑇 , and suppose that the step size ℎ := 𝑇 /𝑁 satisfies ℎ ≲ 1/𝐿, where 𝐿 > 1. Then, it
holds that (let 𝛾𝑑 = Law(N (0, 𝕀𝑑 ))):

TV (𝑝𝑇 , 𝑞) ≲
√︃
KL

(
𝑞∥𝛾𝑑

)
exp(−𝑇 )︸                     ︷︷                     ︸

convergence of forward process

+
(
𝐿
√
𝑑ℎ + 𝐿𝔪2ℎ

) √
𝑇︸                   ︷︷                   ︸

discretization error

+ 𝜀sc
√
𝑇︸︷︷︸

score estimation error

. (6)

To interpret this result, suppose that KL
(
𝑞∥𝛾𝑑

)
≤ poly(𝑑) and 𝔪2 ≤ 𝑑. Choosing 𝑇 ≍ log

(
KL

(
𝑞∥𝛾𝑑

)
/𝜀
)
and

ℎ ≍ 𝜀2

𝐿2𝑑
, and hiding logarithmic factors, we get

TV (𝑝𝑇 , 𝑞) ≤ 𝑂 (𝜀 + 𝜀sc)

for 𝑁 = Θ̃
(
𝐿2𝑑
𝜀2

)
. In particular, in order to have TV (𝑝𝑇 , 𝑞) ≤ 𝜀, it suffices to have score error 𝜀sc ≤ 𝑂 (𝜀) in the

said parameter setup.

Comparison to Langevin MCMC Another popular approach towards sampling via SDE is the Langevin dynamics
([SE19]), where instead one considers the following differential equation with stationary distribution 𝑌 ∼ 𝑞:

d𝑌𝑡 = −∇ ln𝑞 (𝑌𝑡 ) +
√
2 d𝐵𝑡 . (7)

The pro of this approach is obvious, as it only asks for access to ∇ ln𝑞 as opposed to ∇ ln𝑞𝑡 for many different 𝑡 ’s.
However, the drawback is that such a process may take a long time to mix for “multimodal” distributions (e.g.
Gaussian Mixture with two imbalanced clusters, see Figure 3 in [SE19]). In light of this, our diffusion process can
also be pictured as Langevin dynamics with varying noise levels to accelerate mixing by passing freely between
different modes.

Finally, we remark that the iteration complexity of 𝑁 = Θ̃
(
𝐿2𝑑
𝜀2

)
matches SOTA complexity bounds for the

Langevin when sampling under a log-Sobolev inequality ([VW19]). This provides some evidence of the correct
order one should expect.

2.3 Discretization Error of Theorem 1
Let us briefly discuss the proof of Theorem 1, focusing on the most interesting (non-trivial) part which is the
discretization error. The key intuition is that, instead of comparing the distance between the end of the true reverse
process versus the discretized reverse process, we compare the distance between the entire trajectory of the true
versus discretized reverse process which upper bounds the terminal distance due to the data processing inequality.
To do that, we need the following:

Lemma 2 (Girsanov’s Theorem). For 𝑡 ∈ [0,𝑇 ], let L𝑡 =
∫ 𝑡
0 𝑏𝑠 d𝐵s . Assume that 𝔼

∫ 𝑇
0 ∥𝑏𝑠 ∥

2 d𝑠 < ∞. Then, L is
a martingale in 𝐿2. Moreover, if

𝔼E (L)𝑇 = 1, where E (L)𝑡 := exp
(∫ 𝑡

0
𝑏𝑠 d𝐵𝑠 −

1
2

∫ 𝑡

0
∥𝑏𝑠 ∥2 d𝑠

)
,

then E (L) is also a martingale and the process 𝑡 ↦→ 𝐵𝑡 −
∫ 𝑡
0 𝑏𝑠 d𝑠 is a Brownian motion under some explicit change

of measures.

The key idea is that for every possible discretized path with 𝑁 steps, the probability assigned to this path
is easy to compute as it is just 𝑁 Gaussian densities multiplied together. The remaining steps can be roughly
summarized as (let 𝑄←

𝑇
be the true law of process (2) and 𝑃←

𝑇
be our estimated law of (5))1:

1The following parts are crude over-simplifications and not technically correct. A rigorous proof can be found at Section 5 in [CCL+23]
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Bound on the discretization error To apply Lemma 2, we need to bound the error between the estimated
score at discretized endpoints to the actual score. Specifically,

𝔼𝑄←
𝑇

[
∥𝑠𝑇−𝑘ℎ (𝑋𝑘ℎ) − ∇ ln𝑞𝑇−𝑡 (𝑋𝑡 )∥2

]
≲ 𝜀2sc + 𝐿2𝑑ℎ + 𝐿2𝔪2

2ℎ
2.

for all 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] holds.

Approximation argument For 𝑡 ∈ [0,𝑇 ], let L𝑡 =
∫ 𝑡
0 𝑏𝑠 d𝐵𝑠 where

𝑏𝑡 =
√
2 {𝑠𝑇−𝑘ℎ (𝑋𝑘ℎ) − ∇ ln𝑞𝑇−𝑡 (𝑋𝑡 )} ,

if 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ]. The previous part translates to:

𝔼𝑄←
𝑇

1
2

∫ 𝑇

0
∥𝑏𝑠 ∥2 d𝑠 ≲

(
𝜀2sc + 𝐿2𝑑ℎ + 𝐿2𝔪2

2ℎ
2) 𝑇

We conclude by showing that the left-hand quantity upper bounds KL(𝑄←
𝑇
∥𝑃←
𝑇
) via Lemma 2 and finish with

Pinsker’s inequality.

3 Provable Score Estimation
In the last part of this note, we list several examples where diffusion models succeed in achieving state-of-the-art
sampling/learning algorithms in theoretical models. This is one of the very few examples where empirically
motivated methodology inspires progress in highly theoretical problems.

At a high level, those examples succeed in the context that (approximately) optimal algorithms for score
estimation are known, and thus by connecting with existing diffusion bounds we can sample approximately in
polynomial time.

Sampling from the Sherrington-Kirkpatrick Model ([EAMS22]) For a given matrix𝑊 ∈ ℝ𝑛×𝑛 with entries
i.i.d. sampled from N (0, 1/𝑛), the goal is to efficiently sample from:

ℙ𝑊 (𝑥) ∝ exp(−𝛽
2
⟨𝑥,𝑊𝑥⟩)

with high probability. As is well-known that sampling from a worst-case Ising model is #P-hard, the problem
asks for the complexity of sampling from the average-case Ising model. Classical sampling techniques such as the
Glauber dynamics guarantee sampling when the inverse temperature 𝛽 < 1/4. In [EAMS22] and subsequently
[Cel22], it was shown that sampling all the way to 𝛽 < 1 is possible in normalized𝑊2 via DDPM, and that
sampling when 𝛽 > 1 is geometrically hard for algorithmically stable samplers. The result relies on showing that
the denoising function𝑚(𝑦, 𝜎) := 𝔼[𝑥 |𝑊 ;𝑥 + 𝜎𝑔 = 𝑦] can be approximated by AMP for all 𝜎 . Furthermore, an
addition procedure of Natural Gradient Descent is applied on the AMP estimate of denoising𝑚 such that certain
Lipschitz conditions are met.

Posterior Sampling from the Spiked Model ([MW23]) Similar to the SK model, suppose now one has a
𝜃 ∼ {−1, 1}𝑛 sampled from some ℙ𝜃 and observes:

𝐴 =
𝛽

𝑛
𝜃𝜃𝑇 +𝑊

and tries to sample 𝜃 given 𝐴. Such posterior distribution can be written as:

ℙ(𝜃 |𝐴) ∝ exp(−𝛽
2
⟨𝑥,𝐴𝑥⟩).

The more interesting setting is when ℙ𝜃 is uniform, in which case the problem is known as the ℤ2-synchronization.
Similar to the SK model, Glauber Dynamics was not known to mix beyond 𝛽 > 1/4, which in this case is especially
un-interesting since 𝐴 is statistically indistinguishable from pure noise𝑊 when 𝛽 < 1.
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Similar to the above approach, the key lies in approximating the denoising function𝑚(𝑦, 𝜎) = 𝔼[𝜃 |𝐴, 𝜃+𝜎𝑔 = 𝑦].
For ℤ2-synchronization, AMP is known to achieve Bayes optimal for all 𝛽 > 0. However, it is unclear whether the
algorithmic output �̂� is Lipschitz and thus the guarantee cannot extend to all 𝛽 > 0, but only for large enough 𝛽.

Learning Mixtures of Gaussians ([SCK23]) Let us now turn to a problem with different flavors: estimation of
Gaussian Mixture Models. Consider:

𝑞 =
1
𝐾

𝐾∑︁
𝑖=1

N (𝜇𝑖 , 𝕀𝑑 ),

our goal is to given samples estimate {𝜇𝑖 }. While not a sampling task by itself, we show that gradient descent
(with a warm start) on the DDPM objective (3) recovers {𝜇𝑖 } up to additive error 𝜀 in poly(𝑑, 𝜀−1) when 𝐾 ∈ 𝑂 (1).
The key lies in observing that minimizing (3) in different regimes resembles classical learning algorithms such as
the Expectation-Maximization and Spectral algorithms. Specifically, gradient descent closely approximates the
power method on a large noise level, and E&M on a small noise level. This result gives guarantees of effectiveness
in learning scores via commonly used methods such as Gradient Descent.
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