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Lecture 20: Optimality of Approximate Message Passing for ℤ2
Synchronization

1 Recap ℤ2 Synchronization, AMP, And More
Let 𝑋 ∼ {±1}𝑛 be the signal vector. Let𝑊 ∈ ℝ𝑛×𝑛 be the noise matrix with𝑊𝑖 𝑗 ∼ N (0, 1) for 𝑖 ≠ 𝑗 and
𝑊𝑖 𝑗 ∼ N (0, 2) for 𝑖 = 𝑗 . We are given the following noisy version of the signal 𝑋𝑋⊤

𝑌 =

√︂
𝜆

𝑛
𝑋𝑋⊤ +𝑊,

where 𝜆 denotes the signal-to-noise ratio, and our goal is to learn the denoiser 𝑋 minimizing the following loss

MSE(𝑋 ) B 1
𝑛2𝔼𝑋,𝑌 ∥𝑋 (𝑌 )𝑋 (𝑌 )⊤ − 𝑋𝑋⊤∥2𝐹 .

Inspired by the belief propagation (BP) algorithm, we introduced the following approximate message passing
(AMP) algorithm

𝑥𝑡+1 =
1
√
𝑛
𝑌 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡−1(𝑥𝑡−1)𝑏𝑡 , 𝑏𝑡 B

1
𝑛

𝑛∑︁
𝑗=1

𝑓 ′𝑡 (𝑥
𝑗
𝑡 ),

𝑥𝑡+1 = 𝑓𝑡+1(𝑥𝑡+1) .

Here 1√
𝑛
𝑌 𝑓𝑡 (𝑥𝑡 ) in the first equation can be seen as the zeroth-order (mean-field) approximation term of the

message passing. Similarly, −𝑓𝑡−1(𝑥𝑡−1)𝑏𝑡 can be seen as the first-order approximation term, or as the Onsager
correction term that corrects the error in the message passing. Following intuitions from the BP algorithm, we
know that the output of our algorithm, i.e. 𝑥𝑡+1, should approximate the marginal expectation of 𝑋 following the
posterior distribution. Namely, the following holds for the given signal 𝑌

𝑥𝑖𝑡+1 ≈ 𝔼𝑋 𝑖 [𝑋 𝑖 |𝑌 ] .

1.1 State Evolution Analysis
In the asymptotic setting where 𝑛 → ∞, the AMP algorithm can be analyzed using the “state evolution” method.
Intuitively, when 𝑛 → ∞, the distribution of 𝑥𝑡 can be well approximated by

𝑥𝑡 ∼ N (𝜇𝑡𝑋, 𝜎2
𝑡 𝐼 ), (1)

which is independently sampled at every time step 𝑡 . Here the state parameters 𝜇𝑡 and 𝜎𝑡 evolve according to the
following dynamics

𝜇𝑡+1 B
√
𝜆 · 𝔼[𝑥 𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)], 𝜎𝑡+1 B 𝔼[𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)2] . (2)

where 𝑥 ∼ {±1} and 𝑔 ∼ N (0, 1). Therefore, the parameters 𝜇𝑡 ’s and 𝜎𝑡 ’s should indicate how close our estimation
stays to the true value 𝑋 .

The theorem listed below formalizes the above intuition, i.e. Equation 1, and we will directly use this intuition
in the following proofs for simplicity.
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Theorem 1. [BM11a] If 𝑓𝑡 ’s are Lipschitz, then for any “nice” test function 𝜓 : ℝ2 → ℝ and any 𝑡 ,

lim
𝑛→∞

1
𝑛

∑︁
𝑖

𝜓 (𝑥𝑖𝑡 , 𝑋 𝑖) = 𝔼[𝜓 (𝜇𝑡𝑥 + 𝜎𝑡𝑔, 𝑥)] . (3)

With this theorem, we can approximate the average error of all coordinates of our estimation (LHS of Equation 3)
by some one-dimensional parameters that we can easily keep track of (RHS of Equation 3).

To simplify the parameter dynamics (Equation 2), we choose the following nonlinearity 𝑓𝑡 ’s

𝑓𝑡 (𝑦) B 𝔼[𝑥 |𝜇𝑡𝑥 + 𝜎𝑡𝑔 = 𝑦],

which gives

𝜇𝑡+1 =
√
𝜆 · 𝔼[𝑥 · 𝔼[𝑥 |𝜇𝑡𝑥 + 𝜎𝑡𝑔]] =

√
𝜆 · 𝔼[𝔼[𝑥 |𝜇𝑡𝑥 + 𝜎𝑡𝑔]2] =

√
𝜆 · 𝜎2

𝑡+1. (4)

Here the last equality follows directly from the definition of 𝜎𝑡 . Moreover, we define

mmse(𝛾) B 𝔼[(𝑥 − 𝔼[𝑥 |√𝛾𝑥 + 𝑔])2] = 1 − 𝔼[𝔼[𝑥 |√𝛾𝑥 + 𝑔]2] . (5)

When 𝛾 = 𝜇2𝑡 /𝜎2
𝑡 , the random variable √

𝛾𝑥 + 𝑔 = (𝜇𝑡𝑥 + 𝜎𝑡𝑔)/𝜎𝑡 can be seen as a scaled version of 𝜇𝑡𝑥 + 𝜎𝑡𝑔.
Therefore, it naturally follows that

𝜎2
𝑡+1 = 𝔼[𝔼[𝑥 |𝜇𝑡𝑥 + 𝜎𝑡𝑔]2] = 1 −mmse(𝜇2𝑡 /𝜎2

𝑡 ) . (6)

Finally, we further simply Equations 4 and 6 by letting 𝛾𝑡 = 𝜇2𝑡 /𝜎2
𝑡 . Substituting 𝜇2𝑡 = 𝛾𝑡𝜎

2
𝑡 into the equations

yields

𝛾𝑡 = 𝜆𝜎2
𝑡 , 𝜎2

𝑡+1 = 1 −mmse(𝛾𝑡 ),

which leads to the following dynamics

𝛾𝑡+1 = 𝜆(1 −mmse(𝛾𝑡 )),

where 𝜆 is the signal-to-noise ratio we previously introduced.
To track the behavior of the 𝛾𝑡 ’s, a natural idea is to iterate over the above dynamics until we reach some fixed

point. We denote the fixed point of 𝛾 for some given parameter 𝜆 as 𝛾∗(𝜆). The iteration results are plotted as
follows Here the 𝑥 -axis is 𝛾 and the 𝑦-axis is 𝑓 (𝛾) = 𝜆(1 −mmse(𝛾)). It is clear from the figure that for 𝜆 > 1, the

curve 𝑦 = 𝑓 (𝛾) always intersects with line 𝑦 = 𝛾 , leading to one non-zero fixed point. However, for 𝜆 ≤ 1, there is
no non-zero fixed point. For such 𝜆’s, the problem becomes information-theoretically impossible.
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2 Guarantees for AMP
Now that we have enough knowledge about the AMP algorithm and its convergence analysis in the asymptotic
setting where 𝑛 → ∞, we now try to develop theoretical guarantees on the performance of its output. In this
section, we will first compute the MSE achieved by AMP. We then show that this is also the MSE achieved by the
Bayes-optimal estimator, i.e. the posterior mean, which in turn indicates that the AMP algorithm is optimal for the
ℤ2 synchronization in the asymptotic setting.

2.1 MSE for AMP
In this subsection, we calculate the MSE achieved by AMP. Recall that 𝑡 is the number of iterations of AMP, 𝜆 is
the signal-to-noise ratio, and 𝑛 is the dimension of the signal vector 𝑋 . The MSE is then defined as

MSEAMP(𝑡 ; 𝜆, 𝑛) =
1
𝑛2𝔼[∥𝑋𝑋

⊤ − 𝑥𝑡 (𝑥𝑡 )⊤∥2𝐹 ],

MSEAMP(𝑡 ; 𝜆) = lim
𝑛→∞

MSEAMP(𝑡 ; 𝜆, 𝑛) .
(7)

Now let 𝑥 B 𝔼[𝑋𝑋⊤ |𝑌 ] be the Bayes-optimal estimator. Similarly, we define the MSE for this estimator as

MMSE(𝜆, 𝑛) = 1
𝑛2𝔼[∥𝑋𝑋

⊤ − 𝑥𝑥⊤∥2𝐹 ], MMSE(𝜆) = lim
𝑛→∞

MMSE(𝜆, 𝑛) . (8)

We have the following nice guarantee on MSEAMP(𝑡 ; 𝜆), which we will prove shortly
Lemma 1.

MSEAMP(𝑡 ; 𝜆) = 1 −
𝛾2
𝑡+1
𝜆2

.

The following figure plots the MSE for the AMP algorithm for a problem with 𝑛 = 200 and some large enough 𝑡 It

is clear that this statistical physics-based theoretical result perfectly matches the algorithm behavior, which we
haven’t seen too much in other techniques.
Proof of Lemma 1. Direct expansion the Frobenius norm gives

MSEAMP(𝑡 ; 𝜆) = lim
𝑛→∞

1
𝑛2𝔼𝑋,𝑌 [∥𝑋𝑋⊤ − 𝑥𝑡𝑥

⊤
𝑡 ∥2𝐹 ]

= lim
𝑛→∞

1
𝑛2𝔼𝑋 [∥𝑋 ∥42] − 2𝔼𝑋,𝑌 [

⟨𝑥𝑡 , 𝑋 ⟩2
𝑛2 ]︸               ︷︷               ︸

𝐼

+ 1
𝑛2𝔼𝑋,𝑌 [∥𝑥𝑡 ∥42]︸             ︷︷             ︸

𝐼 𝐼

.

3



Since 𝑋 ∈ {±1}𝑛, we know that ∥𝑋 ∥22 = 𝑛, which implies that the first term is 1.
Now we analyze the term 𝐼 . Notice that

lim
𝑛→∞

1
𝑛
⟨𝑥𝑡 , 𝑋 ⟩ = lim

𝑛→∞
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑡𝑋
𝑖 = lim

𝑛→∞
1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑡 (𝑥𝑖𝑡 )𝑋 𝑖

(𝑖 )
≈ 𝔼𝑥,𝑔 [𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)𝑥]

(𝑖𝑖 )
= 𝜇𝑡+1/

√
𝜆

= 𝛾𝑡+1/𝜆,

where 𝑥 ∼ {±1} and 𝑔 ∼ N (0, 1). (𝑖) is because of the state evolution intuition we previously mentioned, i.e.
Equation 1, and (𝑖𝑖) follows from the definition of 𝜇𝑡+1, i.e. Equation 4. Therefore

𝐼 = 2 lim
𝑛→∞

1
𝑛2𝔼[⟨𝑥𝑡 , 𝑋 ⟩2] = 2𝛾2

𝑡+1/𝜆2.

Similarly, for term 𝐼 𝐼 , we first notice that

lim
𝑛→∞

1
𝑛
∥𝑥𝑡 ∥22 = lim

𝑛→∞
1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖𝑡 )2 = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑡 (𝑥𝑖𝑡 )2

(𝑖 )
≈ 𝔼𝑥,𝑔 [𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)2]

(𝑖𝑖 )
= 𝜎2

𝑡+1
= 𝛾𝑡+1/𝜆.

Again, (𝑖) is because of the state evolution intuition in Equation 1, and (𝑖𝑖) follows from the definition of 𝜎𝑡+1, i.e.
Equation 6. Therefore,

𝐼 𝐼 = lim
𝑛→∞

1
𝑛2𝔼𝑋,𝑌 [∥𝑥𝑡 ∥42] = 𝛾2

𝑡+1/𝜆2. (9)

Substituting the two terms back into Equation 2.1 gives

MSEAMP(𝑡 ; 𝜆) = 1 − 2𝛾2
𝑡+1/𝜆2 + 𝛾2

𝑡+1/𝜆2 = 1 − 𝛾2
𝑡+1/𝜆2. (10)

□

2.2 AMP Is Optimal for ℤ2 Synchronization
Now we show the MSE achieved by AMP (Lemma 1) is optimal by proving the following lemma

Lemma 2.

MMSE(𝜆) = lim
𝑡→∞

MSEAMP(𝑡 ; 𝜆) .

The key to the proof is the “I-MMSE relation” given by the following lemma

Lemma 3. [GSV05]

1
𝑛
· 𝜕

𝜕𝜆
𝐼 (𝑋𝑋⊤;𝑌 ) = 1

4MMSE(𝜆, 𝑛) .

Here 𝐼 (𝑋 ;𝑌 ) is the mutual information between 𝑋 and 𝑌 . Intuitively, it indicates:

As 𝜆 increases, the information present in 𝑌 about the signal 𝑋𝑋⊤ increases at a rate proportional to MMSE(𝜆).

Proof of Lemma 2. First, notice that

lim
𝑛→∞

1
𝑛
𝐼 (𝑋𝑋⊤;𝑌 ) |𝜆=0 = 0, lim

𝑛→∞
1
𝑛
𝐼 (𝑋𝑋⊤;𝑌 ) |𝜆→∞ = log 2.
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This is because when 𝜆 → ∞, knowing 𝑌 directly tells the value of 𝑋𝑋⊤. Therefore there is full information
of 𝑋𝑋⊤ in Y. When 𝜆 = 0, 𝑌 has nothing to do with the signal 𝑋𝑋⊤. So there is no mutual information. Now
applying Lemma 3 gives

1
4 lim

𝑛→∞

∫ ∞

0
MMSE(𝜆, 𝑛)d𝜆

= lim
𝑛→∞

1
𝑛
𝐼 (𝑋𝑋⊤;𝑌 ) |𝜆→∞ − lim

𝑛→∞
1
𝑛
𝐼 (𝑋𝑋⊤;𝑌 ) |𝜆=0

= log 2.

On the other hand, since the MMSE is the optimal estimator, we trivially lower bound the MSE of AMP as follows

1
4 lim

𝑛→∞
lim
𝑡→∞

∫ ∞

0
MSEAMP(𝑡 ; 𝜆, 𝑛)d𝜆 ≥ 1

4 lim
𝑛→∞

∫ ∞

0
MMSE(𝜆, 𝑛)d𝜆 ≥ log 2. (11)

For the rest of the proof, we will prove that the LHS of Equation 11 can be upper bounded by log 2. Therefore, all
inequalities are tight, which gives

1
4 lim

𝑛→∞
lim
𝑡→∞

∫ ∞

0
MSEAMP(𝑡 ; 𝜆, 𝑛)d𝜆 =

1
4 lim

𝑛→∞

∫ ∞

0
MMSE(𝜆, 𝑛)d𝜆.

Substituting in the definitions of MSE(𝜆) (Equation 7) and MMSEAMP(𝑡 ; 𝜆) (Equation 8) completes the proof.
From Lemma 1, we know that

1
4 lim

𝑛→∞
lim
𝑡→∞

∫ ∞

0
MSEAMP(𝑡 ; 𝜆, 𝑛)d𝜆

=
1
4 lim

𝑡→∞

∫ ∞

0
(1 − 𝛾2

𝑡

𝜆2
)d𝜆

=
1
4

∫ ∞

0
(1 − 𝛾2

∗ (𝜆)
𝜆2

)d𝜆.

(12)

To do the integral calculation, we let𝜓 (𝛾, 𝜆) B 𝜆
4 +

𝛾2

4𝜆 − 𝛾

2 + 𝐼 (𝛾), which we will prove to be the anti-derivative of
1 − 𝛾2

∗ (𝜆)
𝜆2 at 𝛾 = 𝛾∗(𝜆). Here 𝐼 (𝛾) B 𝐼 (𝑋 ;√𝛾𝑋 + 𝑔) for 𝑔 ∼ N (0, 1). By definition, we have

𝜕

𝜕𝜆
𝜓 (𝛾, 𝜆) = 1

4 (1 −
𝛾2

𝜆2
),

𝜕

𝜕𝛾
𝜓 (𝛾, 𝜆) (𝑖 )

=
𝛾

2𝜆 − 1
2 + 1

2mmse(𝛾) = 1
2𝜆

(
𝛾 − 𝜆(1 −mmse(𝛾))

)
.

Here in (𝑖), we have used the fact that 𝐼 ′ (𝛾) = 1
2mmse(𝛾), where mmse(𝛾) is defined in Equation 5. Notice that

for 𝛾∗, we have 𝛾∗ = 𝜆(1 −mmse(𝛾∗)). Then combining the two terms together gives

d
d𝜆𝜓 (𝛾∗(𝜆), 𝜆) =

1
4 (1 −

𝛾2
∗
𝜆2

) + 1
2𝜆

(
𝛾∗ − 𝜆(1 −mmse(𝛾∗))

)
=

1
4 (1 −

𝛾2
∗
𝜆2

) .

The clever choise of 𝜓 enables us to cancel the terms w.r.t. 𝜕
𝜕𝛾
𝜓 (𝛾, 𝜆) at 𝛾 = 𝛾∗ and conclude that 𝜓 (𝜆∗(𝜆), 𝜆) is

the anti-derivative we are looking for.
Finally, substituting back into Equation 12 gives

1
4

∫ ∞

0
(1 − 𝛾2

∗ (𝜆)
𝜆2

)d𝜆 = 𝜓 (𝜆∗(𝜆), 𝜆)
���∞
0
. (13)
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When 𝜆 → 0, we have mmse(𝛾∗(𝜆)) ≥ 0 and 𝐼 (𝛾∗(𝜆)) → 0. It naturally follows that

lim
𝜆→0

𝛾∗(𝜆) = lim
𝜆→0

𝜆(1 −mmse(𝛾∗(𝜆))) ≤ lim
𝜆→0

𝜆 = 0.

Therefore,

lim
𝜆→0

𝜓 (𝛾∗(𝜆), 𝜆) = lim
𝜆→0

𝜆

4 + 𝛾2

4𝜆 − 𝛾

2 + 𝐼 (𝛾) = 0. (14)

When 𝜆 → ∞, we have mmse(𝛾∗(𝜆)) → 0 and 𝐼 (𝛾∗(𝜆)) → log 2. It is clear that,

lim
𝜆→∞

𝛾∗(𝜆) = lim
𝜆→∞

𝜆(1 −mmse(𝛾∗(𝜆))) = lim
𝜆→∞

𝜆.

Therefore,

lim
𝜆→∞

𝜓 (𝛾∗(𝜆), 𝜆) = lim
𝜆→∞

𝜆

4 + 𝛾2

4𝜆 − 𝛾

2 + 𝐼 (𝛾) = log 2. (15)

Substituting Equation 14 and 15 back into Equation 13 gives

1
4 lim

𝑛→∞
lim
𝑡→∞

∫ ∞

0
MSEAMP(𝑡 ; 𝜆, 𝑛)d𝜆 =

1
4

∫ ∞

0
(1 − 𝛾2

∗ (𝜆)
𝜆2

)d𝜆 = log 2.

Finally, combining the above result with Equation 11 finishes the proof. □

3 Free Energy Perspective for AMP
In this section, we will establish an optimization-based interpretation of AMP, which relates the algorithm to the
optimization of certain free energy.

To begin with, we first analyze the following simpler version of AMP with only a mean-field approximation
term

𝑥𝑡+1 =
1
√
𝑛
𝑌 tanh(

√
𝜆𝑥𝑡 ). (16)

It turns out that the fixed point 𝑥∗ of the above dynamics satisfies ∇𝐺MF(𝑥∗) = 0 for the following Gibbs free
energy 𝐺MF(𝑥)

𝐺MF(𝑥) = −𝐻 (𝜈) −
√
𝜆

2√𝑛
𝔼𝑧∼𝜈 [𝑧⊤𝑌𝑧],

where 𝜈 is the product distribution with marginal expectations given by 𝑥 . Namely, this algorithm (Equation 16)
is minimizing 𝐺MF(𝑥) over product distributions.

Similarly, the fixed point 𝑥∗ of the AMP algorithm

𝑥𝑡+1 =
1
√
𝑛
𝑌 tanh(

√
𝜆𝑥𝑡 ) − tanh(

√
𝜆𝑥𝑡−1) · 𝑏𝑡 (17)

satisfies ∇𝐺TAP(𝑥∗) = 0 for the following TAP free energy 𝐺TAP(𝑥)

𝐺TAP(𝑥) = −𝐻 (𝜈) −
√
𝜆

2√𝑛
𝔼𝑧∼𝜈 [𝑧⊤𝑌𝑧] −

𝑛𝜆

4 (1 −𝑄 (𝔼𝑧∼𝜈 [𝑧]))2

where 𝜈 is the product distribution with marginal expectations given by 𝑥 and 𝑄 (𝑣) = 1
𝑛
∥𝑉 ∥2. Namely, AMP is

minimizing 𝐺TAP(𝑥) over product distributions. Here the last term corresponds to the Onsager correction term
−tanh(

√
𝜆𝑥𝑡−1) · 𝑏𝑡 in AMP (Equation 17).
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4 Other Applications And Algorithms

4.1 Beyond ℤ2 Synchronization
When the distribution of 𝑋 is not uniform over {±1}𝑛, AMP is not necessarily Bayes-optimal. The following figure
[Mio18] plots the MSE for AMP, where every coordinate of 𝑋 follows distribution ℙ(𝑋 𝑖 = 1) = 0.05,ℙ(𝑋 𝑖 =

−1) = 0.95. Unlike the Bayes-optimal estimator MMSE, AMP starts to get non-trivial results only after 𝜆 ≥ 1.

However, in such cases, AMP is still conjectured to be optimal among all polynomial-time algorithms. In other
words, people conjecture that the failure of AMP in some regimes actually indicates computational hardness.

4.2 Beyond Low-Rank Matrix Estimation
Listed below are many other rigorous applications of AMP

• Compressed sensing: [DMM09], [BM11b].
• Generalized linear models: [Ran11], [SR14].
• Mixed linear regression: [TV23].
• Planted clique: [DM15].
• Group synchronization: [PWBM16].
• Nonnegative PCA, sparse PCA, etc.: [MR16], [DM14].
• Random polynomial optimization: [Sub23], [Mon19], [EAMS21].

4.3 Other BP-Inspired Algorithms
There is another kind of BP-inspired algorithm based on non-backtracking operators [KMM+13]. Recall that the
AMP algorithm approximates belief propagation in the regime where the interaction matrix is dense but every
message is relatively small. In another regime where we only have a sparse interaction matrix but every entry has
nontrivial strength, we can still try to approximate belief propagation with the non-backtracking operator.

Consider a given graph 𝐺 and the following nonbacktracking matrix 𝐵, whose entries are indexed by edges
and satisfy:

𝐵 (𝑖, 𝑗 ),(𝑘,𝑙 ) = 1[ 𝑗 = 𝑘 ∩ 𝑖 ≠ 𝑙] . (18)

Intuitively, this entry is only non-zero if we can walk along 𝑖 to 𝑗 and along 𝑗 to 𝑙 without backtracking to 𝑖. Such
matrices can be used for a well-studied problem called “community detection” [Moo17, Abb17, MNS14, YP23].
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4.4 Connecting Back to Distribution Learning
In the next unit, we will see how to use the Bayes-optimal denoising algorithms, of which the AMP algorithm is an
instance, to get distribution learning guarantees via diffusion generative modeling.
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