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Lecture 19: Intro to Approximate Message Passing

1 Recap
We talked about Belief Propagation (BP) last time. We managed to do well on trees and get exact marginals, but
passing from trees to general non-cyclic graphs is quite challenging.

These notes will on the study of Approximate Message Passing (APM). This is a BP-inspired algorithm, which
is conjectured to be optimal for a wide range of inference problems. We will focus on a specific application to
denoising low-rank matrices.

2 ℤ2 Synchronization
Consider a regime with a hidden Boolean vector 𝑋 ∼ {±1}𝑛 where we receive a noisy rank-1 matrix 𝑌 =√︃

𝜆
𝑛
𝑋𝑋⊤ +𝑊 where the noise𝑊 is defined as

𝑊𝑖 𝑗 ∼
{
N (0, 1) if 𝑖 ≠ 𝑗

N (0, 2) otherwise

We choose 𝜆 such that 𝑌 has operator norm approximately
√
𝑛. Our goal is to estimate 𝔼[𝑋 |𝑌 ]1. Another way to

say this is as follows: given 𝑌 , find a a denoiser 𝑋 (𝑌 ) minimizing

MSE(𝑋 ) ≜ 1
𝑛2𝔼𝑋,𝑌 ∥𝑋 (𝑌 )𝑋 (𝑌 )⊤ − 𝑋𝑋⊤∥2𝐹 .

As a baseline, the trivial estimate (𝑋 (𝑌 ) = 0) achieves MSE = 1.

2.1 Spectral Method Baseline
Naively, we could consider taking the top eigenvector 𝑣 of 𝑌 .

Theorem 1 (Baik-Arous-Peche ’04). "BBP transition" - the top eigenvalue of 𝑌 escapes from "bulk" when 𝜆 > 1
[BBAP05].

When 𝜆 = 0, the histogram of eigenvalues of 1√
𝑛
𝑌 form a semi-circle from Wigner semicircle law, but as 𝜆 ≫ 1

the "top eigenvalue" escapes this semi-circular bulk. Indeed, analytically one can find that

1
√
𝑛
𝜆1(𝑌 ) →

{
𝜆 + 1

𝜆
𝜆 > 0

2 if 𝜆 ≤ 1

1
√
𝑛
cos ∠(𝑋, 𝑣) →

{
.
√︁
1 − 1/𝜆2 if 𝜆 > 1

0 if 𝜆 ≤ 1

The issue here is that the algorithm does not incorporate the prior on 𝑋 . e.g. when the prior is Gaussian, this
algorithm is optimal, but this does not give the right answer when 𝑋 has the discrete structure as in our problem.

1By symmetry, 𝔼[𝑋 |𝑌 ] = 0, but we can break symmetry e.g. by conditioning on 𝑋1 = 1, and the algorithms we consider naturally break
this symmetry.
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Figure 1: (Wigner semi-circle law) When 𝜆 ≫ 1 The majority of eigenvalues are within this semicircular bulk, but
the top eigenvalue of 𝑌 on the right side begins to escape this semi-circle.Caption

2.2 Belief Propagation
For BP, we need some Gibbs measure. Let this be the posterior 𝜇 (𝑥) ≜ Pr[𝑋 = 𝑥 |𝑌 ] by Bayes and the fact 𝑋 is
uniform over the Boolean hypercube, we have

𝜇 (𝑥) ∝ Pr[𝑌 |𝑋 = 𝑥]

∝ exp ©«−1
4

𝑌 −
√︂

𝜆

𝑛
𝑥𝑥⊤

2
𝐹

ª®¬
= exp

(
1
2

√︂
𝜆

𝑛
𝑥⊤𝑌𝑥

)
This form looks familiar–it is simply an Ising model with a random interaction matrix. As 𝜆 goes to∞ (temperature
goes to 0), the maximizer is simply the underlying spike that arises when 𝑌 becomes close to 𝑥𝑥⊤.

Recall the compatibility functions in this regime; for 𝑖 < 𝑗

Ψ𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) = exp(𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 ) 𝐴 ≜

√︂
𝜆

𝑛
𝑌

Every entry of 𝐴 is 𝑂 ( 1√
𝑛
). Belief propagation update rules:

𝑚
𝑖 →𝑘
𝜎 [𝑡 + 1] ∝

∏
𝑗≠𝑘

∑︁
𝑠∈{±1}

𝑚
𝑗 →𝑖

𝑠 [𝑡] · exp(𝐴𝑖 𝑗𝜎𝑠)

See the previous lecture on BP for a review on what the messages mean. Note that generally we take this product
over 𝑗 ∈ 𝜕 𝑗\𝑘, but since 𝐴 has values for every entry, this is simply all nodes except 𝑘.

Instead of marginal probabilities, we can equivalently parameterize this value in terms of marginal expectations:

−𝑚 𝑗 →𝑖
− [𝑡] =⇒ 𝑚

𝑗 →𝑖

𝑠 [𝑡] = 1
2
+ 𝑠 ·

𝑥
𝑗 →𝑖

𝑡

2
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Thus our update rule can be modified as follows

𝑚
𝑖 →𝑘
𝜎 [𝑡 + 1] ∝

∑︁
𝑠∈{±1}

𝑚
𝑗 →𝑖

𝑠 [𝑡] · exp(𝐴𝑖 𝑗𝜎𝑠 )

=
𝑒𝐴𝑖 𝑗𝜎 + 𝑒−𝐴𝑖 𝑗𝜎

2
(
exp(𝐴𝑖 𝑗𝜎) − exp(𝐴𝑖 𝑗𝜎)

)
=
𝑒𝐴𝑖 𝑗𝜎 + 𝑒−𝐴𝑖 𝑗𝜎

2

(
1 + tanh(𝐴𝑖 𝑗𝜎)𝑥

𝑗 →𝑖

𝑡

)
In order to compute the marginal expectations, we have

𝑥
𝑖 →𝑘

𝑡+1 =

∏
𝑗≠𝑘 (1 + tanh(𝐴𝑖 𝑗 )𝑥

𝑗 →𝑖

𝑡 ) − ∏
𝑗≠𝑘 (1 − tanh(𝐴𝑖 𝑗 )𝑥

𝑗 →𝑖

𝑡 )∏
𝑗≠𝑘 (1 + tanh(𝐴𝑖 𝑗 )𝑥

𝑗 →𝑖

𝑡 ) + ∏
𝑗≠𝑘 (1 − tanh(𝐴𝑖 𝑗 )𝑥

𝑗 →𝑖

𝑡 )

≈
∏

𝑗≠𝑘 (1 + tanh(𝐴𝑖 𝑗 )𝑥
𝑗 →𝑖

𝑡 ) − ∏
𝑗≠𝑘 (1 − tanh(𝐴𝑖 𝑗 )𝑥

𝑗 →𝑖

𝑡 )

exp
(∑

𝑗≠𝑘 tanh(𝐴𝑖 𝑗 )𝑥
𝑗 →𝑖

𝑡

)
+ exp

(
−∑

𝑗≠𝑘 tanh(𝐴𝑖 𝑗 )𝑥
𝑗 →𝑖

𝑡

)
≈

∏
𝑗≠𝑘 (1 + tanh(𝐴𝑖 𝑗 )𝑥

𝑗 →𝑖

𝑡 ) − ∏
𝑗≠𝑘 (1 − tanh(𝐴𝑖 𝑗 )𝑥

𝑗 →𝑖

𝑡 )

exp
(∑

𝑗≠𝑘 𝐴𝑖 𝑗𝑥
𝑗 →𝑖

𝑡

)
+ exp

(
−∑

𝑗≠𝑘 𝐴𝑖 𝑗𝑥
𝑗 →𝑖

𝑡

)
≈ tanh ©«

∑︁
𝑗≠𝑘

𝐴𝑖 𝑗𝑥
𝑗 →𝑖

𝑡

ª®¬
Where the second to last step comes from a a linear approximation since tanh is linear close to 0. Define

𝑥𝑡+1 ≜
1
√
𝑛
𝑌𝑖 𝑗𝑥

𝑗 →𝑖

𝑡 =
∑︁
𝑗≠𝑘

1
√
𝑛
𝑌𝑖 𝑗 tanh

(√
𝜆𝑥

𝑗 →𝑖

𝑡

)
.

Finally, from here we can substitute in the definition for 𝐴.

𝑥
𝑖 →𝑘

𝑡+1 ≈ tanh
(√

𝜆𝑥
𝑖 →𝑘

𝑡+1

)
We are using tanh since this appeared naturally as we derived the formulae, but our algorithm will be valid for

any nonlinearity. Let this nonlinearity be denoted 𝑓𝑡 (𝑥
𝑗 →𝑖

𝑡 ) ≜ tanh(
√
𝜆𝑥

𝑗 →𝑖

𝑡 ).
We have a total of𝑂 (𝑛2) total messages. The main question is whether we can reduce the number of messages

we need to track.
Attempt 1: All of the message out of a given vertex 𝑖 are close to each other, so we could try just tracking 𝑛

messages, one per vertex. Let’s also replace the
∑

𝑗≠𝑘
1√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥

𝑗 →𝑖

𝑡 )𝑥 𝑖 →𝑘

𝑡+1 with
∑𝑘

𝑗=1
1√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥

𝑗 →𝑖

𝑡 )𝑥 𝑖 →𝑘

𝑡+1 to
make life easier. i.e.

𝑥𝑖𝑡+1 ≜
𝑛∑︁
𝑗=1

1
√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥 𝑗

𝑡 ) =⇒ 𝑥𝑡+1 ≜
1
√
𝑛
𝑌 𝑓𝑡 (𝑥𝑡 )

where 𝑓𝑡 (𝑥𝑡 ) applies 𝑓𝑡 to each entry of 𝑥𝑡 .
This is unfortunately an insufficient attempt. This approximation is analagous to recursively applying the linear

transformation 1√
𝑛
𝑌 to 𝑓𝑡 (𝑥𝑡 ). This can be thought of as a "mean-field approximation" because we are replacing

the complex interaction that happens at each node with simply an average of the messages that are coming out of
the given node.

Attempt 2: All of the messages out of a given vertex 𝑖 are close to each other, but these fluctuations get
amplified nontrivially after BP iteration, leading to a crucial correction to the mean field approximation. Our goal
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is still similar though, where we want to simplify the 𝑛2 messages into one for each vertex. Consider rewriting the
sum ∑︁

𝑗≠𝑘

1
√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥

𝑗 →𝑖

𝑡 )𝑥 𝑖 →𝑘

𝑡+1 = 𝑥𝑖𝑡+1 − 𝛿
𝑖 →𝑘

𝑡+1

where

𝑥𝑖𝑡+1 ≜
𝑛∑︁
𝑗=1

1
√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥

𝑗 →𝑖

𝑡 ), 𝛿
𝑖 →𝑘

𝑡+1 ≜
1
√
𝑛
𝑈𝑖𝑘 𝑓𝑡 (𝑥

𝑘 →𝑖

𝑡 ) = 𝑂 ( 1
√
𝑛
)

Immediately, we have

𝑥𝑖𝑡+1 =
𝑛∑︁
𝑗=1

1
√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥

𝑗 →𝑖

𝑡 ) ±𝑂 (1/
√
𝑛)

Furthermore, since 𝑓𝑡 is tanh and hence Lipschitz, we can perturb 𝑥 𝑘 →𝑖

𝑡 to be the average message 𝑥𝑘𝑡 and obtain

𝛿
𝑖 →𝑘

𝑡+1 =
1
√
𝑛
𝑌𝑖𝑘 𝑓𝑡 (𝑥

𝑘 →𝑖

𝑡 )

=
1
√
𝑛
𝑌𝑖𝑘 𝑓𝑡 (𝑥𝑘𝑡 ) ±𝑂 (1/

√
𝑛)

This allows us to write 𝑥𝑖
𝑡+1 as follows.

𝑥𝑖𝑡+1 =
𝑛∑︁
𝑗=1

1
√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥 𝑗

𝑡 − 𝛿
𝑗 →𝑖

𝑡 ) ±𝑂 (1/
√
𝑛)

If we Taylor Expand the inside of 𝑓𝑡 around 𝑥
𝑗
𝑡 , we get

𝑥𝑖𝑡+1 =
𝑛∑︁
𝑗=1

1
√
𝑛
𝑌𝑖 𝑗

[
𝑓𝑡 (𝑥 𝑗

𝑡 ) − 𝛿
𝑗 →𝑖

𝑡 · 𝑓 ′𝑡 (𝑥
𝑗
𝑡 )

]
±𝑂 (1/

√
𝑛)

Since 𝛿 is equal to the value of the previous message 𝑓𝑡−1(𝑥𝑖𝑡−1), we can write this by what we wrote above. And
we get

=

𝑛∑︁
𝑗=1

1
√
𝑛
𝑌𝑖 𝑗 𝑓𝑡 (𝑥 𝑗

𝑡 ) − 𝑓𝑡−1(𝑥𝑖𝑡−1) ·
∑︁ 1

𝑛

𝑛∑︁
𝑗=1

(𝑌𝑖 𝑗 )2 · 𝑓 ′𝑡 (𝑥
𝑗
𝑡 ) ±𝑂 (1/

√
𝑛)

We note that 𝑌 2
𝑖 𝑗 ≈ 1 since 𝑌𝑖 𝑗 was roughly sampled from a Gaussian. Let 𝑏𝑡 ≜ 1

𝑛

∑𝑛
𝑗=1 𝑓

′
𝑡 (𝑥

𝑗
𝑡 ). We can vectorize

this and see that
𝑥𝑡+1 =

1
√
𝑛
𝑌 𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡−1(𝑥𝑡−1) · 𝑏𝑡

Where 𝑓𝑡 applies the nonlinearity entrywise. We can interpret the first term as the mean-field approximation
and the second term is similar to a kind of memory term called an Onsager correction. Finally, plugging in our
definition for 𝑥 𝑖 →𝑘

𝑡+1 , we have
𝑥𝑡+1 = 𝑓𝑡+1(𝑥𝑡+1)

which is the estimate for the marginal distribution. One can consider random or spectral initialization.

3 Analyzing AMP, State Evolution
As 𝑛 → ∞, the behavior of the iterates of AMP is precisely captured by a certain distributional recursion, state
evolution.

Consider the following thought experiment. Suppose inductively that the 𝑡 -th iterate of AMP has normally
distributed coordinates

𝑥𝑡 ∼ N (𝜇𝑡𝑋, 𝜎2
𝑡 · Id)
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i.e. some noisy estimate of our signal 𝑋 . If we can get that 𝜇𝑡 → 1 and 𝜎𝑡 → 0, then we are done. But this is not
quite possible. In general though, we should be able to bound some of these terms.

Let us apply one step of AMP except we ignore the Onsager term but in exchange we pretend 𝑌 gets resampled
from scratch and try to apply some inductive argument.

𝑥𝑡+1 =
1
√
𝑛

(√︂
𝜆

𝑛
𝑋𝑋⊤ +𝑊

)
𝑓𝑡 (𝑥𝑡 )

∼
(√

𝜆

𝑛
⟨𝑋, 𝑓𝑡 (𝑥𝑡 )⟩𝑋,

1
𝑛
∥ 𝑓𝑡 (𝑥𝑡 )∥2 · Id

)
This inner product is simply

√
𝜆

𝑛
⟨𝑋, 𝑓𝑡 (𝑥𝑡 )⟩ =

√
𝜆
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 · 𝑓𝑡 (𝜇𝑡𝑋𝑖 + 𝜎𝑡𝑔𝑖), 𝑔𝑖 ∼ N (0, 1)

≈
√
𝜆𝔼[𝑥 · 𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)], 𝑥 ∼ {±1}, 𝑔 ∼ N (0, 1)

Hence we can approximate this inner product as

𝜇𝑡+1 ≜
√
𝜆 𝔼[𝑥 · 𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)]

For the variance, we apply similar logic to obtain

𝜎2
𝑡+1 ≜ 𝔼[𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)2]

≈ 1
𝑛

∑︁
𝑓𝑡 (𝜇𝑡𝑋𝑖 + 𝜎2

𝑡 𝑔𝑖)2

=
1
𝑛
∥ 𝑓𝑡 (𝑥𝑡 )∥2

The crucial reason why this works is because we are resampling𝑊 every time in this thought experiment. We can
initialize by setting

𝜇0 = 𝔼[𝑥 𝑓0(𝑥 (0) )], 𝜎2
0 = 𝔼[𝑓0(𝑥 (0) )2]

We arrived upon this recursion by dropping the Onsager term and pretending 𝑌 ′𝑠 randomness is fresh at
every iteration of AMP. In reality, the randomness of 𝑌 is fixed at the outset, and the the Onsager term makes this
heuristic thought experiment rigorous!

Theorem 2 (Bayati-Montanari ’11). If the 𝑓𝑡 ’s are Lipschitz, then for any "nice" test function𝜓 : ℝ2 → ℝ and any 𝑡 ,

lim
𝑛→∞

1
𝑛

∑︁
𝑖

𝜓 (𝑥𝑖𝑡 , 𝑥𝑖) = 𝔼[𝜓 (𝜇𝑡𝑥 + 𝜎𝑡𝑔, 𝑥)]

[BM11]

The heuristic derivation becomes rigorous from this theorem where our RHS is the random sampling at each
iteration compared to the LHS which corresponds to the AMP evolution of our iterates. In the asymptotic limit, we
only need to track this two dimensional iteration 𝜇𝑡 𝜎𝑡 .

We have a two dimensional recursion

𝜇𝑡=1 = 𝔼[𝑥 𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)], 𝜎2
𝑡+1 = 𝔼[𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑡𝑔)2], 𝑥 ∼ {±1}, 𝑔 ∼ N (0, 1)

and we choose a clever nonlinearity
𝑓𝑡 (𝑦) = 𝔼[

√
𝜆𝑥 |𝜇𝑡𝑥 + 𝜎𝑡𝑔 = 𝑦]
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This simplifies our values as follows

𝜇𝑡+1 = 𝔼[
√
𝜆𝑥 · 𝔼[𝑥 |𝜇𝑡𝑥 + 𝜎𝑡𝑔 = 𝑦]]

=
√
𝜆𝔼[𝔼[𝑥 |𝜇𝑡𝑥 + 𝜎𝑡𝑔]2]

=
√
𝜆𝔼[𝑓𝑡 (𝜇𝑡𝑥 + 𝜎𝑔)2]

=
√
𝜆𝜎2

𝑡+1

Hence we have reduced the entire distributional recursion into

𝜇𝑡=1 =
√
𝜆𝜎 [𝑡 + 1]2

We know that for the MMSE for the scalar denoising problem (MMSE for estimating 𝑥 given noisy observation
𝜇𝑡𝑥 + 𝜎𝑡𝑔 where 𝑔 ∼ 𝑁 (0, 1)) we have:

MMSE = 𝔼[(𝑋 − 𝔼[𝑋 |𝜇𝑡𝑥 + 𝜎𝑡𝑔])2]
= 𝔼[𝑋 2] − 𝔼[𝔼[𝑋 |𝜇𝑡𝑥 + 𝜎𝑔]2]
= 1 − 𝜆𝜎2

𝑡+1

where the second equality is simply expanding out the cross term and combining.
Define the mmse(𝛾) to be the MMSE for estimating 𝑋 given √

𝛾𝑥 + 𝜉 where 𝜉 ∼ 𝑁 (0, 1). Hence if we plot
mmse(𝛾) as a function of the the signal to noise ratio, we see a curve that approaches 0. This means that we can
simplify the distributional recursion to be

𝜎2
𝑡+1 = 1 −mmse(𝜆𝜎2

𝑡 )

The remainder of the derivation will be completed in the next lecture.
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