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Lecture 18: Belief Propagation and Bethe Free Energy

In this lecture, we describe the Belief Propagation algorithm for variational inference on Gibbs measures. We
then show that the Gibbs free energy on trees can be written in terms of 1- and 2-wise marginals, motivating the
notion of Bethe free energy which generalizes the idea of Gibbs free energy to a relaxation of probability measures.
Finally we prove a novel connection between the fixed points of the Belief Propagation algorithm and the Bethe
free energy landscape.

We remind ourselves of our notation for Gibbs measures. Consider an undirected graph 𝐺 = (𝑉 , 𝐸) with
𝑉 = [𝑛] and 𝐸 ⊂ {(𝑖, 𝑗) ∈ 𝑉 ×𝑉 : 𝑖 ≠ 𝑗}. One calls a measure 𝜇 over the discrete support {±1}𝑛 a Gibbs measure
if it factors according to the graph, i.e. there exists pairwise compatibility functions 𝜓𝑖 𝑗 : {±1}2 → ℝ≥0 for each
(𝑖, 𝑗) ∈ 𝐸 such that

𝜇 (𝑥) = 1
𝑍

∏
(𝑖, 𝑗 ) ∈𝐸

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) .

𝑍 is the partition function, the normalization constant of the probability distribution,

𝑍 =
∑︁

𝑥∈{±1}𝑛

∏
(𝑖, 𝑗 ) ∈𝐸

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) .

It is also helpful to define an energy function E , where

E (𝑥) =
∑︁

(𝑖, 𝑗 ) ∈𝐸
log

( 1
𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )

)
𝑍 =

∑︁
𝑥∈{±1}𝑛

exp(−E (𝑥)).

In last lecture, we showed that finding a measure 𝜂 ≈ 𝜇 is equivalent to minimizing the entropy 𝐻 (𝜂) and
maximizing the average energy of E under 𝜂.

min
𝜂

KL(𝜈 | |𝜂) ⇐⇒ min
𝜂

−𝐻 (𝜂) + 𝔼𝑥∼𝜂 [E (𝑥)] (1)

The RHS of Eq. 1 is known as the Gibbs free energy. See [MM09],[KZ22],[Mon11] for a thorough introduction.

1 Belief propagation
Belief propagation is a general recipe for variational inference on Gibbs measures. It is provably correct on trees,
but practitioners often apply the algorithm to non-trees to great success. First we shall consider the related problem
of marginal estimation.

1.1 Marginal estimation
Marginal estimation concerns computing quantities like 𝔼𝑥∼𝜇 [𝑥𝑖]. Besides variational inference, it is important
for Bayesian statistics. Assume we observe 𝑦 and want to characterize the posterior distribution of some 𝑥 |𝑦 ∼ 𝜇𝑦 .
The marginal expectations {𝔼𝑥∼𝜇𝑦 [𝑥𝑖]}𝑛𝑖=1 yield the minimum mean squared error estimator,

{𝔼𝑥∼𝜇 (𝑦) [𝑥𝑖]}𝑛𝑖=1 = argmin𝑥 ( ·)𝔼𝑥,𝑦 [∥𝑥 − 𝑥 (𝑦)∥2]
= 𝔼𝑦 [𝔼𝑥 [∥𝑥 − 𝑥 (𝑦)∥2]] .

For any given 𝑦, 𝔼𝑥 [∥𝑥 − 𝑥 (𝑦)∥2] is minimized by setting 𝑥 (𝑦) to the posterior means.
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1.2 Belief propagation warmup with ISET
To provide additional intuition,we consider an analogue of the belief propagation algorithm for ISET. For𝑥 ∈ {±1}𝑛,
we define the set 𝑆𝑥 ⊂ [𝑛] s.t. 𝑖 ∈ 𝑆𝑥 ⇐⇒ 𝑥𝑖 = 1. We define 𝜇 to be uniform over all independent sets in 𝐺 with
the following compatibility functions,

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) = 1[(𝑥𝑖 , 𝑥 𝑗 ) ≠ (1, 1)] .
We have 𝜇 (𝑥) ≠ 0 iff for all (𝑖, 𝑗) ∈ 𝐸 both 𝑥𝑖 , 𝑥 𝑗 are not 1. For general graphs 𝐺 , this is #P-complete, but this
problem can be solved in polynomial-time with dynamic programming if 𝐺 is a tree. Let root correspond to the
root of the tree, 𝑐𝑣 to denote any child 𝑐𝑣 ∈ children(𝑣), and 𝑇𝑎 to denote the subtree rooted at 𝑎. We define

𝑍𝜎 := the number of independent sets of 𝐺 in which the root 𝑥root = 𝜎
𝜇 (𝑎) := uniform distribution over independent sets of 𝑇𝑎
𝑍

(𝑎)
𝜎 = the number of independent sets of 𝑇𝑎 where the root 𝑥𝑎 = 𝜎.

Because the intersection of a subtree and an independent set must also be an independent set, we can derive
recurrence relationships for 𝑍+, 𝑍− . Any independent set𝑈 containing the root cannot contain any children(root).
The intersection of𝑈 and the subtree𝑇child(root) must also be an independent set of𝑇child(root) that does not contain
child(root). When {𝑐1, 𝑐2, . . . , 𝑐𝑘 } = children(root), then any independent sets 𝑈1,𝑈2, . . . ,𝑈𝑘 of 𝑇𝑐1,𝑇𝑐2, . . . ,𝑇𝑐𝑘
that do not contain 𝑐1, . . . , 𝑐𝑘 , respectively, form a unique independent set of 𝑉 that contains the root, 𝑈1 ∪𝑈2 ∪
· · · ∪𝑈𝑘 ∪ {root}. Thus, we obtain the recurrence

𝑍+ =
∏

𝑐root∈children(root)
𝑍 (𝑐root )
− . (2)

By similar logic, we can conclude

𝑍− =
∏

𝑐root∈children(root)
(𝑍 (𝑐root )

+ + 𝑍 (𝑐root )
− ) . (3)

These recurrence relationships provide the basis of a bottom-up dynamic programming algorithm for 𝑍+, 𝑍− . For
all leaves 𝑖, we let 𝑍 (𝑖 )

+ , 𝑍 (𝑖 )
− = 1. We can then use Eqs. 2 and 3 to recursively compute 𝑍 (𝑖 )

+ , 𝑍 (𝑖 )
− for all 𝑖 ∈ 𝐺 .

Once we have 𝑍+, 𝑍−, we can compute the marginal probability for all nodes in the tree,

𝑃𝑥∼𝜇 [𝑥root = +] = 𝑍+
𝑍− + 𝑍+

∝ 𝑍+.

Belief propagation translates the idea of recursing on subtrees to graphs with cycles.

1.3 Belief propagation derivation
We define the subgraph 𝑉 𝑗→𝑖 to be the subgraph that is still connected to 𝑖 once we delete the edge (𝑖, 𝑗) from
𝐺 . 𝑉 𝑗→𝑖 contains all 𝑘 ∈ 𝑉 such that there is a path from 𝑗 to 𝑘 that does not cross the edge (𝑖, 𝑗) and all edges
(𝑘, ℓ) ∈ 𝐸 such that there is a path from 𝑗 that includes the edge (𝑘, ℓ) but not the edge (𝑖, 𝑗).

It is also useful to define the subgraph 𝑉 𝑗→𝑖 ,
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which contains 𝑉𝑗→𝑖 as well as 𝑖 and (𝑖, 𝑗).

We can define a Gibbs measure 𝜇 with respect
to the subgraphs 𝑉 𝑗→𝑖 or𝑉 𝑗→𝑖 by including the subset of compatibility functions that corresponds to edges in the
subgraph. For notational convenience, we can index the Gibbs measure 𝜇 by its subgraph 𝜇𝑉 𝑗→𝑖 or 𝜇

𝑉
𝑗→𝑖 . As in

ISET, we want a set of self-similar expressions for each each subgraph 𝑉 𝑗→𝑖 ,𝑉
𝑗→𝑖 that can then be used to solve

for the marginals. The primitive of our self-similar expressions is a message from node 𝑗 to node 𝑖,

𝑚
jO→𝑖
𝜎 = Pr

𝑥∼𝜇
𝑉 𝑗→𝑖

[𝑥 𝑗 = 𝜎] .

We can also define a message from node 𝑗 to 𝑖 in the subgraph 𝑉 𝑗→𝑖 ,

𝑚
𝑗→ iO
𝜎 = Pr

𝑥∼𝜇
𝑉
𝑗→𝑖

[𝑥𝑖 = 𝜎] .

Note that we can express 𝑍+ and 𝑍 − from the ISET example in terms of the messages,

𝑍+ ∝
∏
𝑗∈𝜕𝑖

𝑚
jO→𝑖
−

𝑍− ∝
∏
𝑗∈𝜕𝑖

(𝑚 jO→𝑖
+ +𝑚 jO→𝑖

− ) .

Crucially, we can also compute the marginal probabilities in terms of the messages. By the law of total probability,
we can express Pr𝑥∼𝜇 [𝑥𝑖 = 𝜎] as a sum of the probability over all 𝑠 ∈ {±1}𝑛 where 𝑠𝑖 = 𝜎 . We use the shorthand
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𝑠𝐾 to denote indexing 𝑠 by the elements of 𝐾 and 𝑠−𝐾 to denote indexing 𝑠 by the elements of [𝑛] − 𝐾 .

Pr
𝑥∼𝜇

[𝑥𝑖 = 𝜎] ∝
∑︁

𝑠𝑖=𝜎;𝑠−𝑖 ∈{±1}𝑛−1

∏
(𝑖, 𝑗 ) ∈𝐸

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) (4)

=
∑︁

𝑠𝑖=𝜎;𝑠−𝑖 ∈{±1}𝑛−1

∏
𝑗∈𝜕𝑖

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )
∏

(𝑘,ℓ ) ∈𝐸 𝑗→𝑖

𝜓𝑘ℓ (𝑥𝑘 , 𝑥ℓ )
 (5)

=
∏
𝑗∈𝜕𝑖


∑︁

𝑠𝑉𝑗→𝑖
∈{±1} |𝑉𝑗→𝑖 |

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )
∏

(𝑘,ℓ ) ∈𝐸 𝑗→𝑖

𝜓𝑘ℓ (𝑥𝑘 , 𝑥ℓ )
 (6)

=
∏
𝑗∈𝜕𝑖


∑︁

𝑠 𝑗 ∈{±1}
𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )

∑︁
𝑠𝑉𝑗→𝑖 −{ 𝑗 }∈{±1}

|𝑉𝑗→𝑖 |−1

∏
(𝑘,ℓ ) ∈𝐸 𝑗→𝑖

𝜓𝑘ℓ (𝑥𝑘 , 𝑥ℓ )
 (7)

∝
∏
𝑗∈𝜕𝑖

∑︁
𝑠∈{±1}

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )𝑚 jO→𝑖
𝑠 . (8)

The factor of proportionality is the same for 𝜎 = ±1, so we can simply normalize the RHS of 8 to compute the
marginal probabilities. We can also relate the marginal probabilities to the messages. When 𝐺 is a tree, 𝑉 𝑖→𝑘 is
the graph 𝐺 excluding the subtree under 𝑘.

This means the message of 𝑉 𝑖→𝑘 is equal to

𝑚
iO→𝑘
𝜎 = Pr

𝑥∼{𝑖 }∪⋃𝑗 ∈𝜕𝑖\{𝑘}𝑇𝑗
[𝑥𝑖 = 𝜇] ∝

∏
𝑗∈𝜕𝑖\{𝑘 }

∑︁
𝑠∈{±1}

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )𝑚 jO→𝑖
𝑠 . (9)

From Eq. 8, we know∑
𝑠∈{±1} 𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )𝑚 jO→𝑖

𝑠 is proportional to𝑚 𝑗→ iO
𝜎 . We have the following recursive equations,

𝑚
iO→𝑘
𝜎 ∝

∏
𝑗∈𝜕𝑖\{𝑘 }

𝑚
𝑗→ iO
𝜎 (10)

𝑚
𝑗→ iO
𝜎 ∝

∑︁
𝑠∈{±1}

𝜓𝑖 𝑗 (𝜎, 𝑠)𝑚 jO→𝑖
𝑠 (11)

Pr
𝑥∼𝜇

[𝑥𝑖 = 𝜎] ∝
∏
𝑗∈𝜕𝑖

𝑚𝑖→ jO
𝜎 ∝𝑚 iO→𝑘

𝜎 ·𝑚𝑘→ iO (12)

For trees, we can compute the messages with a bottom-up dynamic programming algorithm. We pick an arbitrary
vertex as the root and assign𝑚 iO→𝑗

𝜎 = 1
2 for all leafs 𝑖 and parents 𝑗 . Eqs. 9 and 11 allow us to recursively compute
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𝑚
iO→𝑗
𝜎 ,𝑚

𝑗→ iO
𝜎 for all edges (𝑖, 𝑗). Then we can apply Eq. 12 to compute the marginal probabilities.

Belief Propagation can also be adapted for more general graphs. Instead of recursing, we iteratively update
{𝑚 iO→𝑗

𝜎 ,𝑚𝑖→ jO
𝜎 } (𝑖, 𝑗 ) ∈𝐸,𝜎∈{±1} according to Eqs. 10 and 11 until convergence. Because the updating step can be

done in parallel over all messages, this is very fast and efficient algorithm in practice.
Belief Propagation is extremely hard to analyze rigorously on the non-acyclic graphs. Koehler 2019 proved

that message-passing algorithms, e.g. Belief Propagation, find the global minimum of Bethe free energy for
ferromagnetic Ising models, a special class of Gibbs measures, on any graph [Koe19]. Belief Propagation may also
work more generally for sparse, random graphs because they "locally" resemble a tree. Consider a random graph
where each edge is included with probability 𝑐/𝑛 and a vertex 𝑣 . There are ≈ 𝑐 neighbors of 𝑣 or its descendants
and thus ≈ 𝑐𝑑 descendants of 𝑣 within 𝑑 edges of 𝑣 . Because each child is equally likely to be one of 𝑛 nodes, the
probability 𝑣 does not have a path to itself of length ≤ 𝑑 is ≈ (1 − 1/𝑛)𝑐𝑑 ≈ 𝑒−𝑐𝑑/𝑛. When 𝑐𝑑 << 𝑛, i.e. the graph
is sparse, this is unlikely.

1.4 Higher-order marginals
Belief Propagation can also be used to compute the 2-wise marginals when 𝐺 is a tree. Let (𝑖1, 𝑖2) ∈ 𝐸 and
𝜕(𝑖1, 𝑖2) = 𝜕𝑖1 ∪ 𝜕𝑖2 − {𝑖1, 𝑖2}. For 𝑗 ∈ 𝜕(𝑖1, 𝑖2), we let 𝑖 ( 𝑗) denote the unique neighbor. Using the Law of Total
Probability and Markov’s property, we can marginalize over all other vertices 𝑉 \𝜕(𝑖1, 𝑖2).

𝑃𝑟𝑥∼𝜇 [(𝑥𝑖1, 𝑥𝑖2) = (𝜎𝑖1, 𝜎𝑖2)] ∝ 𝜓𝑖1𝑖2 (𝜎𝑖1, 𝜎𝑖2)
∑︁

𝑠∈{±1}𝜕 (𝑖1,𝑖2 )

∏
𝑗∈𝜕 (𝑖1,𝑖2 )

𝑃𝑉 𝑗→𝑖 ( 𝑗 ) [𝑥 𝑗 = 𝑠 𝑗 ]𝜓𝑖 ( 𝑗 ) 𝑗 (𝜎𝑖 ( 𝑗 ) , 𝑠 𝑗 )

∝ 𝜓𝑖1𝑖2 (𝜎𝑖1, 𝜎𝑖2)
∏

𝑗∈𝜕 (𝑖1,𝑖2 )

∑︁
𝑠 𝑗 ∈{±1}

𝑃𝑉 𝑗→𝑖 ( 𝑗 ) [𝑥 𝑗 = 𝑠 𝑗 ]𝜓𝑖 ( 𝑗 ) 𝑗 (𝜎𝑖 ( 𝑗 ) , 𝑠 𝑗 )

∝ 𝜓𝑖1𝑖2 (𝜎𝑖1, 𝜎𝑖2)
∏

𝑗∈𝜕 (𝑖1,𝑖2 )

∑︁
𝑠 𝑗 ∈{±1}

𝑚
𝑗→𝑖 ( 𝑗 )
𝜎𝑖 ( 𝑗 ) .

Interestingly, we can actually express the Gibbs free energy on trees in terms of 1 and 2-wise marginals. The
average energy of a measure 𝜇 is

𝔼𝜇 [E (𝑥)] =
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝔼𝜇 [log 1/𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )] .

Note that 𝔼𝜇 [log 1/𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )] only depends on the pairwise marginals. The derivation that entropy can be
expressed in 1- and 2-wise marginals is more involved.

Lemma 1. Let 𝜇 (𝑥𝑖) and 𝜇𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) denote the 1- and 2-wise marginals. If 𝐺 is a tree, then

𝜇 (𝑥) =
∏

(𝑖, 𝑗 ) ∈𝐸
𝜇𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )

∏
𝑖∈[𝑛]

𝜇𝑖 (𝑥𝑖)1−|𝜕𝑖 |

Moreover, the entropy of 𝐺 is a function of 𝜇 (𝑥𝑖) and 𝜇𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ).

Proof. We prove by induction. The base case (𝑛 = 1) is trivially true. When 𝑛 > 1, let 𝑖 be any leaf of the tree
connected by (𝑖, 𝑗). We find Pr𝜇 [𝑥 = 𝑠] is equal to

Pr
𝜇
[𝑥 = 𝑠] = Pr

𝜇
[𝑥 [𝑛]\{𝑖 } = 𝑠 [𝑛]\{𝑖 }] Pr

𝜇
[𝑥𝑖 = 𝑠𝑖 |𝑥 [𝑛]\{𝑖 } = 𝑠 [𝑛]\{𝑖 }]

= Pr
𝜇
[𝑥 [𝑛]\{𝑖 } = 𝑠 [𝑛]\{𝑖 }] Pr

𝜇
[𝑥𝑖 = 𝑠𝑖 |𝑥 𝑗 = 𝑠 𝑗 ]

= Pr
𝜇
[𝑥 [𝑛]\{𝑖 } = 𝑠 [𝑛]\{𝑖 }]

𝜇𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )
𝜇 𝑗 (𝑥 𝑗 )

.
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We can view Pr𝜇 [𝑥 [𝑛]\{𝑖 } = 𝑠 [𝑛]\{𝑖 }] as the Gibbs measure of the subgraph 𝑉 \{𝑖}, the tree where we remove (𝑖, 𝑗)
and 𝑖. By our inductive hypothesis, we can express this in terms of the 1- and 2-wise marginals,

𝑃𝑟𝜇 [𝑥 [𝑛]\{𝑖 } = 𝑠 [𝑛]\{𝑖 }] = 𝜇𝑉 \{𝑖 } (𝑥) =
∏

(𝑘,ℓ ) ∈𝐸\{ (𝑖, 𝑗 ) }
𝜇𝑘ℓ (𝑥𝑘 , 𝑥ℓ )

∏
𝑘∈[𝑛]\{𝑖 }

𝜇𝑘 (𝑥𝑘 )1−|𝜕𝑉 \{𝑖}𝑘 | .

We obtain

Pr
𝜇
[𝑥 = 𝑠] =


∏

(𝑘,ℓ ) ∈𝐸\{ (𝑖, 𝑗 ) }
𝜇𝑘ℓ (𝑥𝑘 , 𝑥ℓ )

∏
𝑘∈[𝑛]\{𝑖 }

𝜇𝑘 (𝑥𝑘 )1−|𝜕𝑉 \{𝑖}𝑘 |

𝜇𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )
𝜇 𝑗 (𝑥 𝑗 )

=
∏

(𝑘,ℓ ) ∈𝐸
𝜇𝑘ℓ (𝑥𝑘 , 𝑥ℓ )

∏
𝑘∈[𝑛]

𝜇𝑘 (𝑥𝑘 )1−|𝜕𝑘 | .

Furthermore, we can calculate the entropy of 𝜇 in terms of the 1- and 2-wise marginals,

𝐻 (𝜇) = −𝔼𝑥∼𝜇 [log Pr
𝜇
[𝑥]]

= −𝔼𝑥∼𝜇
log 𝜇𝑘ℓ (𝑥𝑘 , 𝑥ℓ ) +

∑︁
𝑘∈[𝑛]

(1 − |𝜕𝑘 |) log 𝜇𝑘 (𝑥𝑘 )


= −
∑︁

(𝑘,ℓ ) ∈𝐸
𝔼𝑥∼𝜇 [log 𝜇𝑘ℓ (𝑥𝑘 , 𝑥ℓ )] −

∑︁
𝑘∈[𝑛]

(1 − |𝜕𝑘 |)𝔼𝑥∼𝜇 [log 𝜇𝑘 (𝑥𝑘 )]

=
∑︁

(𝑘,ℓ ) ∈𝐸
𝐻 (𝜇𝑘ℓ (𝑥𝑘 , 𝑥ℓ )) +

∑︁
𝑘∈[𝑛]

(1 − |𝜕𝑘 |)𝐻 (𝜇𝑘 (𝑥𝑘 )).

□

If you are more curious about Belief Propagation, see [KE22].

2 Bethe Free Energy
Bethe Free energy is a generalization of Gibbs free energy to a certain class of pseudo-distributions. More precisely,
we can define Bethe Free Energy over marginals {𝜈𝑖 , 𝜈𝑖 𝑗 } that satisfy a local consistency property. Every valid
Gibbs measure defines a locally consistent set of marginals, but there may not exist a distribution for every locally
consistent set of marginals. The local consistency property simply states that marginalizing over 2-wise marginals
obtains the 1-wise marginals. ∑︁

𝑥 𝑗 ∈{±1}
𝜈𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) = 𝜈𝑖 (𝑥𝑖) ∀(𝑖, 𝑗) ∈ 𝐸, 𝑥𝑖 ± {±1}.

These are also known as degree-2 Sherali-Adams constraints. Now we are ready to define the Bethe Free Energy in
terms of 1- and 2-wise marginals,

𝐺𝛽 [𝜈] := −
∑︁

(𝑘,ℓ ) ∈𝐸
𝐻 (𝜈𝑘ℓ (𝑥𝑘 , 𝑥ℓ )) +

∑︁
𝑘∈[𝑛]

( |𝜕𝑘 | − 1)𝐻 (𝜈𝑘 (𝑥𝑘 )) + 𝔼𝜈 [E] .

Bethe free energy is a functional over the space of pseudo-distributions. We have already seen an equivalence
between Bethe Free Energy and Gibbs Free Energy in trees. Because Belief Propagation is exact on trees, one
could hope for a similar equivalence between Belief Propagation and Bethe Free Energy on more general types of
graphs. In fact, we will show that the fixed points of Belief Propagation are equivalent to the stationary points of
Bethe Free Energy on all types of graphs.

Lemma 2. Fixed points of the Belief Propagation algorithm satisfy local consistency.
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Proof. Belief Propagation yields the following marginals,

𝜈𝑖 (𝜎) =
1
𝑍𝑖

∏
𝑗∈𝜕𝑖

𝑚
𝑗→ iO
𝜎

𝜈𝑖 𝑗 (𝜎𝑖 , 𝜎 𝑗 ) =
1
𝑍𝑖 𝑗

𝜓𝑖 𝑗 (𝜎𝑖 , 𝜎 𝑗 )𝑚 iO→𝑗
𝜎𝑖 𝑚

jO→𝑖
𝜎 𝑗

,

with the normalizing constants 𝑍𝑖 , 𝑍𝑖 𝑗 ,

𝑍𝑖 =
∑︁

𝜎∈{±1}

∏
𝑗∈𝜕𝑖

𝑚
𝑗→𝑖
𝜎

𝑍𝑖 𝑗 =
∑︁

𝜎𝑖 ,𝜎 𝑗 ∈{±1}
𝜓𝑖 𝑗 (𝜎𝑖 , 𝜎 𝑗 )𝑚 iO→𝑗

𝜎𝑖 𝑚
jO→𝑖
𝜎 𝑗

.

For any 𝑥𝑖 ∈ {±1}, we have ∑︁
𝑥 𝑗 ∈{±1}

𝜈𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) =
1
𝑍𝑖 𝑗

∑︁
𝑥 𝑗 ∈{±1}

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )𝑚 iO→𝑗
𝑥𝑖 𝑚

jO→𝑖
𝑥 𝑗

(13)

=
𝑚

iO→𝑗
𝑥𝑖

𝑍𝑖 𝑗

∑︁
𝑥 𝑗 ∈{±1}

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )𝑚 jO→𝑖
𝑥 𝑗

(14)

∝𝑚 iO→𝑗
𝑥𝑖 𝑚

jO→𝑖
𝑥𝑖

(15)
∝ 𝜈 (𝑥𝑖) . (16)

where Eq. 14 applies the fixed point condition. The LHS and RHS marginalize to 1 when we sum over 𝑥𝑖 = ±1, so
the proportionality is actually equality. □

We can also rewrite Bethe free energy in terms of the partitions.
Lemma 3. We also define

𝑍𝑖;𝑗 :=
∑︁

𝜎∈{±1}
𝑚

i→𝑗
𝜎 𝑚

𝑗→i
𝜎 .

Then

𝐺𝛽 [𝜈] = −
∑︁
𝑖∈[𝑛]

log𝑍𝑖 −
∑︁

(𝑖, 𝑗 ) ∈𝐸
log𝑍𝑖 𝑗 +

∑︁
𝑖∈[𝑛], 𝑗∈𝜕𝑖

log𝑍𝑖;𝑗 .

Proof. We can compute the entropy of the 2-wise marginals from our definition of 𝜈 ,

−
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝐻 (𝜈𝑖 𝑗 ) + 𝔼𝜈 [E] = −

∑︁
(𝑖, 𝑗 ) ∈𝐸

𝔼𝜈𝑖 𝑗 log
1

𝜈𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )
−

∑︁
(𝑖, 𝑗 ) ∈𝐸

𝔼𝜈𝑖 𝑗 log
1

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )

= −
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝔼𝜈𝑖 𝑗 log

𝜓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )
𝜈𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )

= −
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝔼𝜈𝑖 𝑗 log

𝑍𝑖 𝑗

𝑚
iO→𝑗
𝑥𝑖 𝑚 jO→𝑖

𝑥 𝑗

= −
∑︁

(𝑖, 𝑗 ) ∈𝐸
log𝑍𝑖 𝑗 +

∑︁
(𝑖, 𝑗 ) ∈𝐸

𝔼𝜈𝑖 𝑗 [log𝑚
iO→𝑗
𝑥𝑖 + log𝑚 jO→𝑖

𝑥 𝑗
] .
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We can also compute the entropy of the 1-wise marginals from our definition of 𝜈 ,

−
∑︁
𝑖∈[𝑛]

𝐻 (𝜈𝑖) = −
∑︁
𝑖

𝔼𝜈𝑖 log
1

𝜈𝑖 (𝑥𝑖)

= −
∑︁
𝑖

𝔼𝜈𝑖 log
𝑍𝑖∏

𝑗 𝜕𝑖𝑚
𝑗→ iO
𝑥𝑖

= −
∑︁
𝑖

log𝑍𝑖 +
∑︁
𝑖

𝔼𝜈𝑖

[∑︁
𝑗

log𝑚 𝑗→ iO
𝑥𝑖

]
.

It will be useful to compute ∑𝑖∈[𝑛] |𝜕𝑖 |𝐻 (𝜈𝑖) using the Eq. 12 fixed point condition,∑︁
𝑖∈[𝑛]

|𝜕𝑖 |𝐻 (𝜈𝑖) =
∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

𝔼𝜈𝑖 log
1

𝜈𝑖 (𝑥𝑖)

=
∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

𝔼𝜈𝑖 log
𝑍𝑖;𝑗

𝑚
iO→𝑗
𝑥𝑖 𝑚

𝑗→ iO
𝑥𝑖

=
∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

log𝑍𝑖;𝑗 −
∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

𝔼𝜈𝑖 𝑗 [log𝑚
iO→𝑗
𝑥𝑖 + log𝑚 𝑗→ iO

𝑥𝑖 ] .

Finally, we can compute

𝐺𝛽 [𝜈] = −
∑︁

(𝑘,ℓ ) ∈𝐸
𝐻 (𝜈𝑘ℓ (𝑥𝑘 , 𝑥ℓ )) +

∑︁
𝑘∈[𝑛]

( |𝜕𝑘 | − 1)𝐻 (𝜈𝑘 (𝑥𝑘 )) + 𝔼𝜈 [E]

=

−
∑︁

(𝑖, 𝑗 ) ∈𝐸
log𝑍𝑖 𝑗 +

∑︁
(𝑖, 𝑗 ) ∈𝐸

𝔼𝜈𝑖 𝑗 [log𝑚
iO→𝑗
𝑥𝑖 + log𝑚 jO→𝑖

𝑥 𝑗
]


+
[∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

log𝑍𝑖;𝑗 −
∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

𝔼𝜈𝑖 𝑗 [log𝑚
iO→𝑗
𝑥𝑖 +𝑚 𝑗→ iO

𝑥𝑖 ]
]

−
[∑︁
𝑖

log𝑍𝑖 +
∑︁
𝑖

𝔼𝜈𝑖

[∑︁
𝑗

log𝑚 𝑗→ iO
𝑥𝑖

] ]
= −

∑︁
𝑖∈[𝑛]

log𝑍𝑖 −
∑︁

(𝑖, 𝑗 ) ∈𝐸
log𝑍𝑖 𝑗 +

∑︁
𝑖∈[𝑛], 𝑗∈𝜕𝑖

log𝑍𝑖;𝑗 .

□

Note that 𝑍𝑖 , 𝑍𝑖;𝑗 , 𝑍𝑖 𝑗 are invariant to the scaling of the messages, so we do not need to normalize them to
compute Bethe Free Energy. In general, there may be many fixed points of the belief propagation algorithm that
are not the correct marginals. However, these fixed points are connected to Bethe Free Energy by the following
theorem.

Theorem 1. Take any graph 𝐺 = (𝑉 , 𝐸), which may not be a tree. There is a 1-1 correpondence between messages
that are

fixed points of Belief Propagation ⇐⇒ stationary points for 𝐺𝛽 .

Proof. We compute the stationary points of Bethe free energy by differentiating with respect to the messages and
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ignoring irrelevant terms that do not depend on𝑚 iO→𝑗
𝜎𝑖 ,

𝜕𝐺𝛽 [𝜈]

𝜕𝑚
iO→𝑗
𝜎𝑖

=
1
𝑍𝑖;𝑗

𝜕𝑍𝑖;𝑗

𝜕𝑚
iO→𝑗
𝜎𝑖

− 1
𝑍𝑖 𝑗

𝜕

𝜕𝑚
iO→𝑗
𝜎𝑖

𝑍𝑖 𝑗

=
𝑚
𝑗→ iO
𝜎𝑖∑

𝜎∈{±1}𝑚
iO→𝑗
𝜎 𝑚

𝑗→ iO
𝜎

−
∑
𝜎 𝑗 ∈{±1} 𝜓𝑖 𝑗 (𝜎𝑖 , 𝜎 𝑗 )𝑚

jO→𝑖
𝜎 𝑗∑

𝜎,𝜎 𝑗 ∈{±1}𝑚
iO→𝑗
𝜎 𝑚 jO→𝑖

𝜎

.

This vanishes for all 𝑖, 𝑗, 𝜎𝑖 iff

𝑚
𝑗→ iO
𝜎𝑖 ∝

∑︁
𝜎 𝑗

𝜓𝑖 𝑗 (𝜎𝑖 , 𝜎 𝑗 )𝑚 jO→𝑖
𝜎 𝑗

.

This is exactly Eq. 11 from the Belief Propagation algorithm! We can also find Eq.10 in the Belief Propagation
algorithm by differentiating with respect to𝑚 𝑗→ iO

𝜎𝑖 ,

𝜕𝐺𝛽 [𝜈]

𝜕𝑚
𝑗→ iO
𝜎𝑖

=
1
𝑍𝑖;𝑗

𝜕

𝜕𝑚
𝑗→𝑐𝑖𝑟𝑐𝑙𝑒𝑑𝑖
𝜎𝑖

𝑍𝑖;𝑗 −
1
𝑍𝑖

𝜕

𝜕𝑚
𝑗→ iO
𝜎

𝑍𝑖

=
𝑚

iO→𝑗
𝜎𝑖∑

𝜎∈{±1}𝑚
iO→𝑗
𝜎 𝑚

𝑗→ iO
𝜎

−
∏
𝑘∈𝜕𝑖\{ 𝑗 }𝑚

𝑘→ iO
𝜎𝑖∑

𝜎

∏
𝑘∈𝜕𝑖𝑚

𝑘→ iO
𝜎

.

This equals 0 for all 𝑖, 𝑗, 𝜎𝑖 iff

𝑚
iO→𝑗
𝜎𝑖 ∝

∏
𝑘∈𝜕𝑖\{ 𝑗 }

𝑚𝑘→ iO
𝜎𝑖

.

□

For a more in-depth discussion of Bethe Free Energy, see [Pfi14],[Mac11].
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