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Lecture 14: SQ Lower Bounds, Recipes and Applications

1 Overview
• Statistical query (SQ) model

• SQ lower bounds for supervised problems

– SQ Lower bounds for noisy parity
– SQ dimension and the general recipe for proving correlational SQ (CSQ) lower bounds
– SQ Lower bounds for multilayer perceptrons (MLPs)
– SQ Lower bounds for real-value functions

• SQ lower bounds for unsupervised problems

– SQ lower bounds for unsupervised problems
– How to lower bound statistical dimension

2 Statistical query (SQ) model
We define the statistical query (SQ) model of computation. We consider an algorithm that only interacts with
dataset {(𝑧𝑖)} through some 𝜓 : ℝ𝑚 → ℝ. The samples are in the forms of 𝔼[𝜓 (𝑧)] + 𝜁 , where 𝜁 is some noise
with |𝜁 | ≤ 𝜏 for tolerance 𝜏 corresponding to

√︁
1/𝑁 (𝑁 is the number of samples). This model captures essentially

any known learning algorithm except for Gaussian elimination.

3 SQ lower bounds for supervised problems

3.1 SQ Lower bounds for noisy parity
We start with the task of learning parity (LPN) with noise,which is a noisy supervised learning task. Given dimension
𝑑 and parameter 𝜂 < 1, our goal is to learn a randomly picked 𝑆 ⊂ [𝑑] given a data set (𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁 ) as
follows:

𝑥 ∼ {±1}𝑑 , 𝑦 =

{
𝑥𝑆 , w.p. 1 − 𝜂

− 𝑥𝑆 , otherwise.

We consider some upper bounds for this task:

• 𝑁 = 𝑑 samples suffice information-theoretically (brute force over 𝑆).

• When 𝜂 = 0, this is just a linear system modulo 2, can solve in polynomial time with Gaussian elimination.

• When 𝜂 > 0, there is a 2𝑂 (𝑑/log𝑑 ) -time algorithm that can beat brute force [BKW03].

We also have the following two properties from the lower bound side:

• LPN hypothesis: this task is hard to learn. Actually, there is no polynomial time algorithm even to even to
distinguish from random labels.
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• 𝑘-sparse parity with noise: if |𝑆 | = 𝑘, any algorithm requires 𝑑Ω (𝑘) time.

In particular, we have the following lower bound

Theorem 1 ([BFJ+94]). Any statistical query algorithm for learning parity with noise requires 𝑂 (2Ω (𝑑 ) queries or
tolerance 2−Ω (𝑑 ) .

proof strategy. We consider any query to 𝔼𝑥,𝑦 [𝑦 ·𝜓 (𝑥)] and:

• Argue that as a random variable in the unknown parity 𝑆 , this quantity concentrates around its expectation
𝔼𝑆𝔼𝑥,𝑦 [𝑦 ·𝜓 (𝑥)].

• For most 𝑆 , a valid SQ oracle would simply answer the query with 𝔼𝑆𝔼𝑥,𝑦 [𝑦 ·𝜓 (𝑥)].

• This oracle provides very little information about 𝑆 .

□

3.2 SQ dimension
Now, we provide General recipe for proving CSQ lower bounds for supervised problems: statistical query dimension
using the so called SQ dimensions. We recall the correlational statistical query (CSQ) models. In this setting, the
algorithm only interacts with the dataset through queries of the form 𝔼[𝑦 ·𝜓 (𝑥)] + 𝜁 , where 𝜓 : ℝ𝑑 → ℝ and 𝜁

is some noise with |𝜁 | ≤ 𝜏 for tolerance 𝜏 corresponding to
√︁
1/𝑁 . We provide the definition for SQ dimension as

follows:

Definition 1 (SQ dimension). A class of functions has SQ dimension ≥ 𝐷 w.r.t. input distribution 𝑞 if there exist
functions 𝑓1, ..., 𝑓𝐷 in the class s.t. for all 𝑖 ≠ 𝑗 :

|𝔼𝑥∼𝑞 [𝑓𝑖 (𝑥) 𝑓𝑗 (𝑥)] | ≤
1
𝐷
.

As an example, we consider the PARITY = {𝑓 (𝑥) = 𝑥𝑆 : 𝑆 ⊂ [𝑑]} has SQ dimension 2𝑑 with respect to uniform
distribution. This argument also lets us generalize to sparse parity.

Now, we give the following theorem connecting the SQ dimension and CSQ query lower bounds.

Theorem 2 ([BFJ+94, Szö09]). If F has SQ dimension 𝐷 with respect to 𝑞, then any CSQ algorithm for learning F
from examples from 𝑞 requires Ω(𝐷𝜏2) queries or tolerance 𝜏 .

As an example, we take the tolerance to be 𝜏 = 3
√︁
1/𝐷,. This indicates that If 𝐷 is super-polynomially

large, the SQ lower bound qualitatively implies that you either need a super-polynomial number of queries or a
super-polynomial number of samples (inverse tolerance).

proof on board. We consider F with SQ dimension ≥ 𝐷, i.e., we can find 𝑓1, ..., 𝑓𝐷 ∈ F such that

|𝔼𝑥 [𝑓𝑖 (𝑥) 𝑓𝑗 (𝑥)] | ≤
1
𝐷
.

The brief idea for the proof is to argue that the number of problem instances 𝑖 ∈ [𝐷] that get “ruled out" at every
state is very small because for most 𝑖, answering with a “trivial" oracle response is accurate.

In particular, we define
⟨𝑓 , 𝑔⟩ := 𝔼𝑥∼𝑞 [𝑓 (𝑥)𝑔(𝑥)] .

Fixing CSQ query 𝔼[𝑦𝜓 (𝑥)], we further define

𝐴+ := {𝑖 ∈ [𝐷] : ⟨𝑓𝑖 ,𝜓 ⟩ ≥ 𝜏},
𝐴− := {𝑖 ∈ [𝐷] : ⟨𝑓𝑖 ,𝜓 ⟩ ≤ −𝜏}.
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Our goal is to show that |𝐴± | are small. We pick the rotation function

𝑍 = ⟨𝜓,
∑︁
𝑖∈𝐴+

𝑓𝑖⟩2.

We first provide the upper bound of 𝑍 by Cauchy-Schwartz inequality:

𝑍 ≤ ∥𝜓 ∥2∥
∑︁

𝑖∈𝐴+ 𝑓𝑖

∥2

≤
∑︁

𝑖, 𝑗∈𝐴+
⟨𝑓𝑖 , 𝑓𝑗 ⟩

=
∑︁
𝑖∈𝐴+

∥ 𝑓𝑖 ∥2 +
∑︁

𝑖≠𝑗∈𝐴+
⟨𝑓𝑖 , 𝑓𝑗 ⟩

≤
∑︁
𝑖∈𝐴+

∥ 𝑓𝑖 ∥2 +
1
𝐷
|𝐴+ | ( |𝐴+ | − 1)

≤ |𝐴+ |2
𝐷

+ |𝐴+ |.

We also have the following lower bound on 𝑍 according to the fat that ⟨𝜓,∑𝑖∈𝐴+ 𝑓𝑖⟩ ≥ 𝜏 |𝐴+ |. By definition of 𝐴+,
we have

𝑍 ≥ 𝜏2 |𝐴+ |2.
Therefore, we have

𝜏2 |𝐴+ |2 ≤ 𝑍 ≤ |𝐴+ |2
𝐷

+ |𝐴+ |,

which indicates that
|𝐴+ | ≤ 𝐷

𝐷𝜏2 − 1
≤ 𝑂 (1/𝜏2).

Similarly, we have |𝐴− | ≤ 𝑂 (1/𝜏2). This shows that all but 𝑂 (1/𝜏2) are consistent with the answer 0. Therefore,
𝐷𝜏−2 queries are enough to narrow down to the true answer. □

3.3 SQ Lower bounds for MLPs
For MLPs, we have the following lower bound for any CSQ algorithms.

Theorem 3 ([DKKZ20]). Any CSQ algorithm for learning one-hidden-layer size-𝑘 MLP’s over Gaussians, even to
constant error, requires 2𝑑Θ(1) queries or tolerance 𝑑−Ω (𝑘 )

In this class, we prove a slightly weaker bound with a simpler proof due to [GGJ+20]. In particular, they exhibit
a family of 𝑑Ω (log𝑘 ) networks that are all exactly orthogonal to each other.

Proof. We select 𝑆 ⊆ [𝑑] of size𝑚 = log𝑘. Given 𝑤 ∈ {±1}𝑚, we defined 𝑤 [𝑆 ] ∈ 𝕊𝑑−1 by

𝑤
[𝑆 ]
𝑖

=

{
𝑤𝑖/

√
𝑚, if 𝑖 ∈ 𝑆;

0, otherwise.

We define

𝑓𝑆 (𝑥) =
∑︁

𝑤∈{±1}𝑚
(
𝑚∏
𝑖=1

𝑤𝑖)ReLU(⟨𝑤 [𝑆 ], 𝑥⟩) .

We have the following two claims:

Claim 1. 𝑓𝑆 is nonzero.

Claim 2. ⟨𝑓𝑆 , 𝑓𝑇 ⟩ = 0 for any sign-symmetric 𝑞 if 𝑆 ≠ 𝑇 .
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Proof. We define ⊙ as (𝑥 ⊙ 𝑧)𝑖 = 𝑥𝑖𝑧𝑖 . We have

𝑓 (𝑥 ⊙ 𝑧) = 𝑧𝑆 𝑓𝑆 (𝑥)
=
∑︁
𝑤

∏
𝑖∈[𝑚]

𝑤𝑖ReLU(⟨𝑤 [𝑆 ], 𝑥 ⊙ 𝑧⟩)

=
∑︁
𝑤

∏
𝑖∈[𝑚]

𝑤𝑖ReLU(⟨𝑤 [𝑆 ] ⊙ 𝑧, 𝑥⟩)

=
∑︁
𝑤′

∏
𝑖∈[𝑚]

𝑤 ′
𝑖 · 𝑧𝑆ReLU(⟨𝑤

′ [𝑆 ], 𝑥⟩).

Thus, we have

⟨𝑓𝑆 , 𝑓𝑇 ⟩𝑞 = 𝔼𝑥 [𝑓𝑆 (𝑥) 𝑓𝑇 (𝑥)]
= 𝔼𝑥,𝑧 [𝑓𝑆 (𝑥 ⊙ 𝑧) 𝑓𝑇 (𝑥 ⊙ 𝑧)]
= 𝔼𝑥,𝑧 [𝑓𝑆 (𝑥) 𝑓𝑇 (𝑥)𝑧𝑆𝑧𝑇 ]
= 𝔼𝑥 [𝑓𝑆 (𝑥) 𝑓𝑇 (𝑥)] · 𝔼𝑧 [𝑧𝑆𝑧𝑇 ] .

We can observe that the second term is 0, which makes ⟨𝑓𝑆 , 𝑓𝑇 ⟩𝑞 = 0. □

Using the above two claims, we can deduce that the SQ dimension for this problem is at least

SQ𝑑,𝑚 ≥ 𝑑Ω (𝑚) = 𝑑Ω (log𝑘 ) .

□

3.4 SQ Lower bounds for real-value functions
The Full SQ lower bounds for supervised learning of real-valued functions are rare or hard to show. This is because
the quirk of the SQ model. However, we still have the following observation:

Observation 1 ([VW19]). Suppose F is a finite collection of functions such that for every 𝑓 , 𝑔 ∈ F , Pr𝑥∼𝑞 [𝑓 (𝑥) =
𝑔(𝑥)] = 0. Then there exists a statistical query that will rule out a constant fraction of functions in F , even with
tolerance 0.1.

proof strategy. The intuition is to find 𝜙 (𝑥, 𝑓 (𝑥)) such that 𝜙 (𝑥, 𝑓 (𝑥)) = 𝑣 𝑓 for 𝑣 𝑓 ∈ [0, 1]. This is well-defined
because for every 𝑓 , 𝑔 ∈ F , Pr𝑥∼𝑞 [𝑓 (𝑥) = 𝑔(𝑥)] = 0. In this way, an answer to 𝜙 (𝑥, 𝑓 (𝑥)) rules out all 𝑔 ∈ F such
that |𝑣𝑔 − 𝑣 𝑓 | > 0.1. □

We remark that when functions are real-valued but take on Boolean values a non-vanishing fraction of the
time, then the proof above does not apply. Other than this observation, [CGKM22] also provides a full SQ lower
bounds for learning (real-valued) MLPs over Gaussian inputs

4 SQ lower bounds for unsupervised problems

4.1 SQ lower bounds for unsupervised problems
Instead of families of functions w.r.t. some input distribution 𝑞, we now consider families of distributions. Let
𝐷 be a reference distribution (typically a simple distribution like Unif({±1}𝑑 ) or N (0, 𝐼𝑑 ). We define pairwise
correlation between two distributions relative to 𝐷 as

⟨𝐷1, 𝐷2⟩𝐷 = 𝔼𝑥∼𝐷

[(
𝐷1(𝑥)
𝐷 (𝑥) − 1

) (
𝐷2(𝑥)
𝐷 (𝑥) − 1

)]
.
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Given set 𝑇 of distributions, we define average correlation w.r.t. 𝐷 by

𝜌𝐷 (𝑇 ) =
1
|𝑇 |2

∑︁
𝐷1,𝐷2∈𝑇

⟨𝐷1, 𝐷2⟩𝐷 .

In particular, we say the set of distributions 𝑇 ∗ has statistical dimension ≥ Δ with respect to 𝐷 with average
correlation 𝛾 if for every 𝑇 ⊆ 𝑇 ∗ of size ≥ |𝑇 ∗ |/Δ, we have 𝜌𝐷 (𝑇 ) ≤ 𝛾 . We have the following theorem:

Theorem 4 ([FGR+17]). Suppose 𝑇 ∗ is a finite collection of distributions with statistical dimension ≥ Δ with respect
to 𝐷 with average correlation 𝛾 . Then any statistical query algorithm for learning distributions in𝑇 ∗ requires tolerance√
𝛾 or at least Ω(Δ) queries

proof intuition. Suppose that for > 1/Δ fraction of distributions in𝑇 ∗, some statistical query has expectation much
farther than its expectation w.r.t. 𝐷. Then the average correlation among those distributions is too large. The
remaining proof closely tracks the SQ dimension proof for supervised learning. □

4.2 How to lower bound statistical dimension
In this subsection, we focus on deriving a general recipe for SQ lower bounds. We start from an SQ lower bound for
mixtures of Gaussians. Our goal is to design a set of Gaussian mixtures which mostly have tiny pairwise correlation
with each other relative to N (0, 𝐼𝑑 ).

A core problem here is to get tiny pairwise correlation. The idea here is the so-called “moment matching". In
particular, we consider some distribution 𝐴 over ℝ that matches the first𝑚 order moments with N (0, 𝐼𝑑 ). We
then define 𝑃𝑣 to be the moment of unit vector 𝑣 w.r.t. 𝐴. These 𝑃𝑣 ’s can be regarded as some “parallel pancakes"
that satisfy the two key properties:

• Moments of 𝑃𝑣 are equal to moments of N (0, 𝐼𝑑 ).

• For typical 𝑣 ′, the projection of 𝑃𝑣 along 𝑣 ′ looks like N (0, 𝐼𝑑 ).

Therefore, the method of moments and the dimensionality reduction (actually one can prove that for all CSQ
algorithms) fail. Formally, we have the following theorem:

Theorem 5 ([DKS17]). Let 𝐴 be a distribution over ℝ whose first𝑚 moments match those of N (0, 1), i.e.

𝔼𝑥∼𝐴 [𝑥𝑖] = 𝔼𝑥∼N (0,1) [𝑥𝑖]

for all 1 ≤ 𝑖 ≤ 𝑚. Then for any unit vector 𝑢, 𝑣 , we have

⟨𝑃𝑢, 𝑃𝑣⟩N (0,𝐼𝑑 ) ≤ |⟨𝑢, 𝑣⟩|𝑚+1⟨𝐴,𝐴⟩N (0,1) .

From the mixture of Gaussian, we propose the general recipe for SQ lower bounds:

• We construct one-dimensional moment-matching example using a distribution from the distribution family
in question (e.g. Gaussian mixtures). This step is usually highly problem-specific and where all the hard
work goes.

• We hide it along some direction (𝑃𝑣 should still be a member of the distribution family).

• We argue that it is hard for any SQ algorithm to distinguish whether samples come from some 𝑃𝑣 or from
N (0, 𝐼𝑑 ).

In conclusion, we have the following theorem for learning mixture of Gaussians:

Theorem 6 ([DKS17]). Any SQ algorithm that learns general mixtures of Gaussians, i.e. of the form
∑𝑘

𝑖=1 𝜆𝑖N (𝜇𝑖 , Σ𝑖),
requires 𝑑Ω (𝑘 ) queries or 𝑑−Ω (𝑘 ) tolerance.
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