
CS 2243 Fall 2024 Scribes: <names>
10/21 Based on notes by: Cole Harten, Weiyuan Gong

Lecture 13: Hardness Basics, SQ Lower Bounds, SQ Dimension

Today, we introduce the next unit on computational complexity, specifically on proving lower bounds of
problems. These lower bounds serve to tell us when continuing to find a more efficient algorithm for a problem is
futile and when we should revist and possibly alter the assumptions we made.

1 Finishing Lecture 12

1.1 Finishing Mean Field Limit
Recall that last time we hade a MLP with scaling defined as

𝑓𝜃 (𝑥) =
1
𝑁

∑︁
𝑖

𝑎𝑖𝜎 (⟨𝑤𝑖 , 𝑥⟩) (1)

Here 𝑁 represents the "width" of the network (the number of neurons). We have previously observed that as
𝑁 → ∞, the neurons at time 𝑡 of the gradient flow will converge to i.i.d. draws from the distribution 𝜌𝑡 , which
satisfies the differential equation

𝜕𝑡𝜌𝑡 = div
(
𝜌𝑡 · ∇𝜓𝜌𝑡

)
(2)

However, in many settings, this PDE is intractable to work with. Hence, in order to greatly simplify the problem,
we often consider toy models, specifically ones with high symmetry. For example, one such simplified, model that
makes use of symmetry is when the 𝑥 ′ s are normally distributed and 𝑦 = 𝜙 (⟨𝑤∗, 𝑥⟩). This is a type of single
index model, where the data depends only on a fixed projection of the data (in the direction of 𝑤∗). Hence, in
this model the data is secretly 1-dimensional. As in this situation, the data distribution doesn’t vary with rotations
so long as 𝑤∗ is preserved, this greatly simplifies the PDE.

In these settings you can often numerically solve the PDE to obtain actual predictions. However, such numerical
methods rely on the simplifying assumptions we made earlier. However, it is still difficult to get provable results
from these algorithms.

Now we will revisit the correlational statistical query model (CSQ). For single index-models (models of the
form 𝑦 = 𝜙 (⟨𝑤∗, 𝑥⟩)), the complexity of CSQ algorithms are dictated primarily by what is known as the "informal
exponent," that is, the smallest 𝑠 for which the 𝑠-th Hermite coefficient of 𝜙 is non-zero. If we are training only a
single neuron, running online SGD will learn in an expected amount of time, 𝑂 (𝑑𝑠) [AGJ21]. There are results
that generalize the idea of "leap complexity" to multi-index models (models of the form 𝑦 = 𝜙 (∏𝑊 𝑥)) in time
𝑂
(
𝑑 leap) [ABAM23].
In general, the algorithms discussed above are optimal for CSQ algorithms. However, there are (at least in

principle) other more efficient non-CSQ algorithms, such as filtered PCA which achieve O(d) sample complexity
and fixed-polynomial runtime. The optimality of these CSQ algorithms, can be proved using computational
lowerbounds (which we will discuss in a moment).

1.2 Recap of Supervised Learning
Still virtually all algorithms in the field of PAC learning, rely on low-degree polynomials. We began with
approximating binary circuits by their low degree Fourier coefficients and ended with using the Mean Field
Limit to learn low-degree components of the underlying functions generating the data.

However, there are two distinct concepts of low degree polynomials have discussed. The first is What is the
smallest degree for which there is a polynomial that approximates the ground truth? This approach exploits
Fourier/Hermite concentrations. Algorithms include low-degree algorithm, polynomial regression, and kernel
methods.

1

The other concept of low-degree polynomials is What is the smallest degree at which the ground truth has a
nonzero polynomial component? This approach exploits informa-
tion exponents/leaps. Algorithms included tensor methods, feature learning/GD beyond NTK.

2 Introduction to Computational Complexity

2.1 Guiding Examples
Throughout the entire course, we have consistently seen two examples show up:

• Learning a mixture of 𝑘 Gaussians in ℝ𝑑

• Learning neural networks of size 𝑘 over Gaussian inputs in ℝ𝑑

For both algorithms, it is an open question regarding the existence of a fully poly (𝑘, 𝑑)-time algorithm. This
could either be because we just haven’t found some mathematical solution yet, or it could be because no efficient
algorithm exists as the problem is currently formulated. To rule out the first option, we make use of lower bounds.

2.2 Computational Hardness
We have dealt with several problems restricted by statistical lower bounds. For example, the Airy Disks from the
first lecture will require exponentially many samples to differentiate below the diffraction limit. In this case,
solving this problem without enough data is impossible even with an infinite amount of compute.

In this section, we will explore the case where there is enough signal in the dataset that a computationally
inefficient algorithm (i.e. brute force) can solve the problem, but that no computationally efficient algorithm
exists to solve the problem. There are a couple of different version of classical computational hardness such as
NP hardness (SAT, graph coloring, etc.) and cartographic hardness (public-key cryptography, pseudorandom
generators, etc.).

However, we will focus primarily on "average case hardness." A classic example is the planted clique problem:
Setup: Given the adjacency matrix of a graph sampled either from an Erdos-Renyi graph 𝐺 (𝑛, 1/2) (every edge
independently included with probability 1/2) or a Planted graph (graph is 𝐺 (𝑛, 1/2) with a random clique of size
𝑁).
Task: Determine which case we are in with high probability over the randomness
of the instance.
The largest clique in 𝐺 (𝑛, 1/2) is of size either 2 log𝑛 or 2 log𝑛 + 1 with probability 1 − 𝑜𝑛 (1). Thus, the problem
is information-theoretically intractable when 𝑁 ∈ Ω(log𝑛). We could brute force a solution to this algorithm (i.e.
there is enough "signal"), but no known computationally efficient algorithm exists for 𝑁 = 𝑜 (

√
𝑁). In the case of

𝑁 ∈ Ω(
√
𝑁), there does exist an efficient algorithm using the top eigen vector of the adjacency matrix [AKS98].

It is hypothesized that no poly-time algorithm exists for this case.
Another problem is learning parity with noise, which is a noisy supervised learning task. For positive 𝜂, random

𝑆 ⊆ [𝑑], and dataset D = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1, defined as

𝑥 ∼ {±1}𝑑 𝑦 =

{
𝑥𝑆 𝑤 · 𝑝.1 − 𝜂

−𝑥𝑆 otherwise

𝑁 = 𝑂 (𝑑 log𝑑) samples are information-theoretically sufficient, as we could (inefficiently) brute force the
solution. When we have 𝜂 = 0, this is just a linear system modulo 2 that we could solve in polynomial time with
Gaussian elimination. It is hypothesized that no polynomial time algorithm exists even to distinguish the 𝑦′ s from
random labels.

2.3 Traditional Hardness Paradigm
The classic approach to proving hardness rests of reductions. Given some problem 𝑋 that is provably hard, show
that efficiently solving some other problem 𝑌 could be (efficiently) mapped to a solution of problem 𝑋 . This

2

approach is very effective for worst-case hardness but break down for average-case hardness. This requires us to
look for new ways to prove average-case hardness that do not rely on reductions.

3 Lower Bounds in Restricted Models

3.1 Restricted Model of Computation
Here is an alternate approach to proving these lower-bounds:

• Formally define a restricted model of computation that captures all known algorithms for the problem in
question.

• Prove a lower bound against algorithms in the restricted model

This approach works unconditionally (unlike NP hardness which is conditional on 𝑃 ≠ 𝑁𝑃). There are a few
different approaches to this proof:

• Statistical query: Only makes use of noisy estimates of population-level statistics of the data distribution

• Lipschitz algorithms: If the instance is pertubed, the algorithm output does not change much.

• Low-degree algorithms: Only uses low-degree polynomials evaluated on the data

• Sum-of-Squares Algorithms: There is a "Canonical" SoS relaxation of the problem, and we want to prove
high degree SoS is necessary

These are much "easier" to show than reductions; however, they are often less convincing than reduction-based
bounds.

3.2 Statistical Query
We will return to the correlational statistical query (CSQ) model of computation. We will define the statistical
query (SQ) model of computation as an algorithm that only interacts with some dataset {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 through
some oracle that takes in

𝜓 : ℝ𝑑 ×ℝ → ℝ

and outputs

𝔼[𝜓 (𝑥,𝑦)] + noise
where | noise |≤ 𝜏 for some tolerance 𝜏 =

√︁
1/𝑁 .

If the labels 𝑦𝑖 ∈ {±1} and 𝑥 ∼ 𝑞 for some unknown distribution 𝑞, then 𝑆𝑄 = 𝐶𝑆𝑄 and we have

𝔼[𝜓 (𝑥,𝑦)] = 𝔼

[1 + 𝑦
2 𝜓 (𝑥, 1) + 1 − 𝑦

2 𝜓 (𝑥,−1)
]
= 𝔼[𝑔(𝑥)] + 𝔼[𝑦 · ℎ(𝑥)] (3)

In general, the statistical query model can capture essentially any known learning algorithm except for Gaussian
elimination and others (it is still an open question which algorithms it cannot capture).

3

3.3 Proof of SQ Lower Bound for Noiseless Parity
Theorem 1 ([Kea98]). Any statistical query algorithm for learning parity (without noise) requires 2Ω (𝑑) queries or
tolerance 2−Ω (𝑑) .

Proof. Recall the setting from above for learning parity with noise. We have the data set D = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 with

𝑥 ∼ {±1}𝑑 𝑦 =

{
𝑥𝑆 𝑤 · 𝑝 · 1 − 𝜂

−𝑥𝑆 otherwise

Now, however, for the setting without noise, we will set 𝜂 = 0. Consider first any CSQ𝜙 : {±1}𝑑 → [−1, 1].
Let

𝜙𝑆 := 𝔼𝑥 [𝑥𝑆𝜙 (𝑥)]
I claim first that for uniformly random subsets 𝑆 ⊆ [𝑛],

Var𝑆 [𝜙𝑆] ≥ 2−Ω (𝑛)

The proof of this lemma is as follows:

Var [𝜙𝑆] = 𝔼
𝑆

[
𝜙2
𝑆

]
− 𝔼

𝑆
[𝜙𝑆]2

= 𝔼
𝑆
𝔼
𝑥,𝑥 ′

[
𝑥𝑆𝑥

′
𝑆𝜙 (𝑥)𝜙 (𝑥 ′)

]
− 𝔼

𝑆,𝑆 ′
𝔼
𝑥,𝑥 ′

[
𝑥𝑆𝑥

′
𝑆 ′𝜙 (𝑥)𝜙 (𝑥 ′)

]]
= 𝔼

𝑥,𝑥 ′
[𝜙 (𝑥)𝜙 (𝑥 ′) 𝔼

𝑆,𝑆 ′

[
𝑥𝑆𝑥

′
𝑆 − 𝑥𝑆𝑥 − 𝑆 ′

]
︸ ︷︷ ︸

𝛼

] (∗) (*)

I claim that the inside expectation 𝛼 is equal to 0 if 𝑥 ≠ 𝑥 ′. For 𝑧 ≠ 1, 𝐸𝑆 [𝑧𝑆] = 0 so if 𝑥 ≠ 𝑥 ′, then
𝔼𝑆

[
𝑥𝑆𝑥

′
𝑆

]
= 𝔼 [𝑧𝑆] = 0 and 𝔼𝑆,𝑆 ′

[
𝑥𝑆𝑥

′
𝑆

]
= 𝔼, [𝑥𝑆] 𝔼𝑆 ′

[
𝑥 ′
𝑆 ′
]
= 0 because at most of of 𝑥, 𝑥 ′ = 1. This is a "pairwise

independence" argument.
Returning, to the previous expression, we can use this fact to get

(∗) = 𝔼
𝑥,𝑥 ′

[𝜙 (𝑥)𝜙 (𝑥 ′) · 𝟙 [𝑥 = 𝑥 ′]]

=
1
2𝑛 𝔼𝑥

[
𝜙 (𝑥)2

]
≤ 1

2𝑛 .

Thus, by Chebyshev’s inequality, we can get that

ℙ
𝑆

[����𝜙𝑆 − 𝔼
𝑆
[𝜙𝑠]

���� ≥ 𝜏

]
≤ 1

𝜏2
Var (𝜙𝑆)

≤ 1
2𝑛𝜏2

Hence, in order to answer the CSQ 𝜙 , we can just output 𝔼𝑆 [𝜙𝑆]. If the tolerance is equal to 𝜏 , this is accurate
for 1

2𝑛𝜏2 fraction of parity functions. That is, each CSQ only rules out at most 1/𝜏2 many 𝑆 ′ s. Thus, we need 2𝑛𝜏2
many queries. Letting 𝜏 := 2−𝑛/3 completes the proof.

4

3.4 SQ Dimension
Now, we provide a gneral recipe for proving CSQ lower bounds for supervised problems.
Definition 1 (SQ dimension). A class of functions has SQ dimension ≥ 𝐷 w.r.t. input distribution 𝑞 if there exist
functions 𝑓1, ..., 𝑓𝐷 in the class s.t. for all 𝑖 ≠ 𝑗 :

|𝔼𝑥∼𝑞 [𝑓𝑖 (𝑥) 𝑓𝑗 (𝑥)] | ≤
1
𝐷
.

As an example, we consider the PARITY = {𝑓 (𝑥) = 𝑥𝑆 : 𝑆 ⊂ [𝑑]} has SQ dimension 2𝑑 with respect to uniform
distribution. This argument also lets us generalize to sparse parity.

Now, we give the following theorem connecting the SQ dimension and CSQ query lower bounds.
Theorem 2 ([BFJ+94, Szö09]). If F has SQ dimension 𝐷 with respect to 𝑞, then any CSQ algorithm for learning F
from examples from 𝑞 requires Ω(𝐷𝜏2) queries or tolerance 𝜏 .

As an example, we take the tolerance to be 𝜏 = 3
√︁
1/𝐷,. This indicates that If 𝐷 is super-polynomially

large, the SQ lower bound qualitatively implies that you either need a super-polynomial number of queries or a
super-polynomial number of samples (inverse tolerance).

proof on board. We consider F with SQ dimension ≥ 𝐷, i.e., we can find 𝑓1, ..., 𝑓𝐷 ∈ F such that

|𝔼𝑥 [𝑓𝑖 (𝑥) 𝑓𝑗 (𝑥)] | ≤
1
𝐷
.

The brief idea for the proof is to argue that the number of problem instances 𝑖 ∈ [𝐷] that get “ruled out" at every
state is very small because for most 𝑖, answering with a “trivial" oracle response is accurate.

In particular, we define
⟨𝑓 , 𝑔⟩ := 𝔼𝑥∼𝑞 [𝑓 (𝑥)𝑔(𝑥)] .

Fixing CSQ query 𝔼[𝑦𝜓 (𝑥)], we further define

𝐴+ := {𝑖 ∈ [𝐷] : ⟨𝑓𝑖 ,𝜓 ⟩ ≥ 𝜏},
𝐴− := {𝑖 ∈ [𝐷] : ⟨𝑓𝑖 ,𝜓 ⟩ ≤ −𝜏}.

Our goal is to show that |𝐴± | are small. We pick the rotation function

𝑍 = ⟨𝜓,
∑︁
𝑖∈𝐴+

𝑓𝑖⟩2.

We first provide the upper bound of 𝑍 by Cauchy-Schwartz inequality:

𝑍 ≤ ∥𝜓 ∥2∥
∑︁

𝑖∈𝐴+ 𝑓𝑖

∥2

≤
∑︁

𝑖, 𝑗∈𝐴+
⟨𝑓𝑖 , 𝑓𝑗 ⟩

=
∑︁
𝑖∈𝐴+

∥ 𝑓𝑖 ∥2 +
∑︁

𝑖≠𝑗∈𝐴+
⟨𝑓𝑖 , 𝑓𝑗 ⟩

≤
∑︁
𝑖∈𝐴+

∥ 𝑓𝑖 ∥2 +
1
𝐷
|𝐴+ | (|𝐴+ | − 1)

≤ |𝐴+ |2
𝐷

+ |𝐴+ |.

We also have the following lower bound on 𝑍 according to the fat that ⟨𝜓,∑𝑖∈𝐴+ 𝑓𝑖⟩ ≥ 𝜏 |𝐴+ |. By definition of 𝐴+,
we have

𝑍 ≥ 𝜏2 |𝐴+ |2.

5

Therefore, we have
𝜏2 |𝐴+ |2 ≤ 𝑍 ≤ |𝐴+ |2

𝐷
+ |𝐴+ |,

which indicates that
|𝐴+ | ≤ 𝐷

𝐷𝜏2 − 1 ≤ 𝑂 (1/𝜏2).

Similarly, we have |𝐴− | ≤ 𝑂 (1/𝜏2). This shows that all but 𝑂 (1/𝜏2) are consistent with the answer 0. Therefore,
𝐷𝜏2 queries are enough to narrow down to the true answer. □

References
[ABAM23] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:

leap complexity and saddle-to-saddle dynamics, 2023.

[AGJ21] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference, 2021.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a random graph.
Random Structures & Algorithms, 13(3-4):457–466, 1998.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven Rudich.
Weakly learning dnf and characterizing statistical query learning using fourier analysis. In Proceedings
of the twenty-sixth annual ACM symposium on Theory of computing, pages 253–262, 1994.

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983–1006, 1998.

[Szö09] Balázs Szörényi. Characterizing statistical query learning: simplified notions and proofs. In
International Conference on Algorithmic Learning Theory, pages 186–200. Springer, 2009.

6

	Finishing Lecture 12
	Finishing Mean Field Limit
	Recap of Supervised Learning

	Introduction to Computational Complexity
	Guiding Examples
	Computational Hardness
	Traditional Hardness Paradigm

	Lower Bounds in Restricted Models
	Restricted Model of Computation
	Statistical Query
	Proof of SQ Lower Bound for Noiseless Parity
	SQ Dimension

