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Lecture 12: Mean Field Limit

1 Finishing up the NTK Analysis

1.1 Recalling the Setting
We are given a dataset (𝑥𝑖 , 𝑦𝑖) ∈ ℝ𝑑 ×ℝ and a student network 𝑓𝜃 : ℝ𝑑 → ℝ. We are trying to learn parameters
𝜃 ∈ ℝ𝑝 , where 𝜃 is initialized to some 𝜃0. We define the loss of some function 𝑔 to be 𝐿(𝑔) △= 1

2 | |𝑔(𝑋 ) − 𝑦 | |
2
2 and

𝐿0
△
= 𝐿(𝛾 𝑓𝜃0), where 𝛾 > 0 is a scaling parameter.
We can define a gradient flow on the parameter space Θ through the equation

𝑑𝜃𝑡 = −∇𝜃𝐿(𝛾 𝑓𝜃𝑡 )𝑑𝑡 = −𝛾 𝐽𝑇𝑡 ∇𝐿(𝛾 𝑓𝜃𝑡 )𝑑𝑡,

where the Jacobian matrix is given by

𝐽𝑡 = 𝐽𝜃𝑡 =
©­­«
∇𝜃 𝑓𝜃𝑡 (𝑥1)

...

∇𝜃 𝑓𝜃𝑡 (𝑥1) .

ª®®¬ ∈ ℝ𝑛×𝑝

The main idea is to compare the gradient flow to linearized dynamics, which is given by the equations

𝑓 𝑙𝑖𝑛
𝜃
(𝑥) = 𝑓𝜃0 (𝑥) + 𝐽0(𝜃 − 𝜃0)

𝑑𝜃𝑡 = −∇𝜃𝐿(𝛾 𝑓 𝑙𝑖𝑛𝜃𝑡
) = −𝛾 𝐽𝑇0 ∇𝐿(𝛾 𝑓 𝑙𝑖𝑛𝜃𝑡

),

where we note here that the Jacobian does not change in time for the linearized network. Two assumptions from
last time were

1. 𝐽𝜃 is Lipschitz in 𝜃 with some constant 𝛽.

2. 𝐽0 = 𝐽𝜃0 is full rank.

Before we complete the analysis, we recall the lemmas we proved last time.

Lemma 1. Suppose that 𝑄 (𝑡) ⪰ 𝜆 · 𝐼𝑑 for all 𝑡 . Then for (𝑔𝑡 ) given by

𝑑𝑔𝑡 = −𝑄 (𝑡)∇𝐿(𝑔𝑡 )𝑑𝑡,

we have
𝐿(𝑔𝑡 ) ≤ 𝐿(𝑔0) · exp(−2𝜆𝑡) .

In lecture, the way this was written was

𝐿(𝜃𝑡 ) ≤ exp
(
−Ω(𝜎2

min(𝐽𝜃 )𝛾2𝑡)
)
𝐿0

Proof. The proof idea was through a strong convexity style argument. □

Lemma 2 (Lemma 2). If 𝜃 is close to 𝜃0, then 𝐽𝜃 is close to 𝐽𝜃0 .

Proof. The idea of the proof was the triangle inequality and the assumption that 𝐽 is Lipschitz, that is,

| |𝐽𝜃 − 𝐽𝜃0 | |𝑜𝑝 ≤ 𝛽 | |𝜃 − 𝜃0 | |2

for some 𝛽 > 0. □
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Today, we will do the final step, proving

Lemma 3. Suppose that (𝜃𝑡 ) satisfies
𝑑𝜃𝑡 = −𝑆 (𝑡)𝑇∇𝐿(𝑔𝜃𝑡 )

for some network 𝐺 , and that 𝜆 · 𝐼𝑑 ⪯ 𝑆 (𝑡)𝑆 (𝑡)𝑇 ⪯ 𝜆 · 𝐼𝑑 . Then

| |𝜃𝑡 − 𝜃0 | |2 ≤
√︁
𝜆

𝜆
| |𝑔

𝜃0
(𝑥) − 𝑦 | |.

The key feature here is that the numerator features a square root.

Proof.

𝜃𝑡 = 𝜃0 −
∫ 𝑡

0
𝑆 (𝑠)𝑇∇𝐿(𝑔

𝜃𝑠
)𝑑𝑠

⇒ ||𝜃𝑡 = 𝜃0 | | −
∫ 𝑡

0
| |𝑆 (𝑠)𝑇∇𝐿(𝑔

𝜃𝑠
) | |𝑑𝑠

≤
∫ 𝑡

0
| |𝑆 (𝑠) | |𝑜𝑝︸    ︷︷    ︸
≤
√
𝜆

·| | ∇𝐿(𝑔
𝜃𝑠
)︸   ︷︷   ︸

𝑔
𝜃𝑠
(𝑥 )−𝑦

| |𝑑𝑠

≤
√︁
𝜆 ·

∫ 𝑡

0
| |𝑔

𝜃𝑠
(𝑥) − 𝑦 | |︸          ︷︷          ︸

≤exp(−𝜆𝑠 ) · | |𝑔
𝜃0
−𝑦 | | (by previous lemma)

𝑑𝑠

≤
√︁
𝜆 · | |𝑔

𝜃0
− 𝑦 | | ·

∫ 𝑡

0
exp(−𝜆𝑠)𝑑𝑠

≤
√︁
𝜆 · | |𝑔

𝜃0
− 𝑦 | | · 1

𝜆
𝑑𝑠

Applying this inequality to 𝜃𝑡 = 𝜃𝑡 , 𝑔𝜃 = 𝑓 𝑙𝑖𝑛
𝜃

, 𝑆 (𝑡) = 𝛾 𝐽0, we have that

| |𝜃𝑡 − 𝜃0 | | ≤
√︁
𝜎2
max(𝐽0)

𝜎2
min(𝐽0)

· | |𝑓𝜃0 (𝑥) − 𝑦 | |

≤
√︁
2𝛾2𝜎2

max(𝐽0)
𝛾2𝜎2

min(𝐽0)
·
√︃
𝐿0

≲
𝜎max(𝐽0)
𝛾𝜎2

min
·
√︃
𝐿0

Then, substituting our bounds on the eigenvalues of 𝐽0 suffices for the proof.
□

2 Mean-Field Limit
To recall, in the NTK regime, we have as the trainer network

𝑓𝜃 (𝑥) = 𝛾

𝑁∑︁
𝑖=1

𝑎𝑖𝜎 (⟨𝑤𝑖 , 𝑥⟩),

and the NTK regime is characterized as 𝛾 ≫ 1/𝑁 . As showed previously, the Jacobian does not change much
over this scaling, and so the network is well-approximated by its Taylor expansion around the parameters at
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initialization. However, gradient descent in the NTK regime is bottlenecked by what kernel methods can do. Then,
the natural question is what happens in the regime 𝛾 ≍ 1

𝑁
, which is known as the mean field regime.

We first introduce notation, then explain the defining features of the mean field limit. We first introduce the
student network

𝑓𝜃 (𝑥) =
1
𝑁

𝑁∑︁
𝑖=1

𝑎𝑖𝜎 (⟨𝑤𝑖 , 𝑥⟩)

It will be convenient to denote this by 𝑓𝜃 (𝑥) = 1
𝑁

∑𝑁
𝑖=1 𝜎 (𝑥 ;𝜃𝑖) We will consider population gradient descent:

𝜃 (𝑘+1) ← 𝜃 (𝑘 ) − 𝜂𝑘∇𝐿
(
𝜃 (𝑘 )

)
where 𝐿(𝜃 ) = 𝔼𝑥,𝑦

[
(𝑦 − 𝑓𝜃 (𝑥))2

]
is the test loss (can be approximated using online gradient descent). This loss

function 𝐿(𝜃 ) can be decomposed as

𝐿(𝜃 ) = 𝔼
[
𝑦2] + 2

𝑁

𝑁∑︁
𝑖=1

𝑉 (𝜃𝑖) +
1
𝑁 2

𝑁∑︁
𝑖, 𝑗=1

𝑈
(
𝜃𝑖 , 𝜃 𝑗

)
,

where
𝑉 (𝜃𝑖) ≜ −𝔼 [𝑦 · 𝜎 (𝑥 ;𝜃𝑖)]

is known as the external field and
𝑈

(
𝜃𝑖 , 𝜃 𝑗

)
≜ 𝔼

[
𝜎 (𝑥 ;𝜃𝑖) · 𝜎

(
𝑥 ;𝜃 𝑗

) ]
are "pairwise interactions" between particles/neurons. Some convenient notation will be to set

∇𝜃𝑖𝐿(𝜃 ) =
2
𝑁
∇Ψ𝜃 (𝜃𝑖) for Ψ𝜃 (𝜃𝑖) ≜ 𝑉 (𝜃𝑖) +

1
𝑁

𝑁∑︁
𝑗=1

𝑈
(
𝜃𝑖 , 𝜃 𝑗

)
.

2.1 Physics Intuition for the Mean Field Limit
The physics intuition is to regard each 𝜃𝑖 is an interacting particle. The idea is that as𝑁 →∞, the fluctuations in the
“environment” around any given particle average out, so every particle experiences same “average environment,”
hence the name mean field. In the mean field limit, at any point in time, all particles are i.i.d. draws from same
distribution. The natural question, hence, is how does this distribution evolve over the course of training?

Let’s consider the loss

𝐿(𝜃 ) = 𝔼
[
𝑦2] + 2

𝑁

𝑁∑︁
𝑖=1

𝑉 (𝜃𝑖) +
1
𝑁 2

𝑁∑︁
𝑖, 𝑗=1

𝑈
(
𝜃𝑖 , 𝜃 𝑗

)
We can think of the term 2

𝑁

∑𝑁
𝑖=1𝑉 (𝜃𝑖) as similar-valued to 2𝔼 [𝑉 (𝜃𝑖)] for 𝜃𝑖 drawn from the "empirical

distribution"𝜌𝜃 ≜ 1
𝑁

∑
𝑖 𝛿𝜃𝑖 , and the second term 1

𝑁 2

∑𝑁
𝑖,𝑗=1𝑈

(
𝜃𝑖 , 𝜃 𝑗

)
can similarly be thought of as some 𝑈 -

Statistic.
Hence, the idea is that instead of parametrizing in terms of 𝜃 = (𝜃1, . . . , 𝜃𝑁 ), we can parametrize in terms of a

probability distribution 𝜌 over ℝ𝑑 . Then 𝐿 becomes

𝐿(𝜌) ≜ 𝔼
[
𝑦2] + 2∫ 𝑉 (𝜃 )d𝜌 (𝜃 ) +

∫
𝑈 (𝜃, 𝜃 ′) d𝜌 (𝜃 )d𝜌 (𝜃 ′)

To give some more intuition, the basic idea in statistical physics is that when the number of particles in a system is
very large, instead of considering the dynamics of all of the individual particles, we can instead consider some
probability distribution induced by the particles. This assumption is justified in the 𝑁 →∞ limit due to a law of
large numbers argument.
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Let’s do a comparison of what the dynamics look like in the finite 𝑁 case and in the mean-field limit. In the
finite 𝑁 case, the loss function, Ψ (parameterized by 𝜃), and the dynamics are given by

𝐿(𝜃 ) = 𝔼
[
𝑦2] + 2

𝑁

𝑁∑︁
𝑖=1

𝑉 (𝜃𝑖) +
1
𝑁 2

𝑁∑︁
𝑖, 𝑗=1

𝑈
(
𝜃𝑖 , 𝜃 𝑗

)
Ψ𝜃 (𝜃𝑖) ≜ 𝑉 (𝜃𝑖) +

1
𝑁

𝑁∑︁
𝑗=1

𝑈
(
𝜃𝑖 , 𝜃 𝑗

)
d𝜃 𝑡𝑖 = −∇Ψ𝜃

(
𝜃 𝑡𝑖
)
d𝑡, 𝜃0

𝑖 ∼ 𝜌0.

In the mean-field limit, these equations are given by

𝐿(𝜌) ≜ 𝔼
[
𝑦2] + 2∫ 𝑉 (𝜃 )d𝜌 (𝜃 ) +

∫
𝑈 (𝜃, 𝜃 ′) d𝜌 (𝜃 )d𝜌 (𝜃 ′)

Ψ𝜌 (𝜃 ) ≜ 𝑉 (𝜃 ) +
∫

𝑈 (𝜃, 𝜃 ′) d𝜌 (𝜃 ′)

d𝜃 𝑡𝑖 = −∇Ψ𝜌𝑡

(
𝜃 𝑡𝑖

)
d𝑡, 𝜌𝑡 = law

(
𝜃 𝑡𝑖

)
One difference here is that the parameters in question are not individual 𝜃 ’s, but rather probability distributions.
Secondly, the function Ψ in the dynamics is now parameterized by 𝜌𝑡 . The idea here is that the dynamics of the
mean-field are now parameterized by the mean-field variables themselves. In particular, one can show that the
dynamics are given by a continuity PDE:

𝜕𝑡𝜌𝑡 = Div(𝜌𝑡 · ∇Ψ𝜌𝑡 ),

which holds in the weak sense. In the above, −∇Ψ𝜌𝑡 is called the velocity field of 𝜌𝑡 , and the idea is that the
process 𝜌𝑡 is performing gradient descent in the space of probability distributions (equipped with the Wasserstein
metric) with respect to the function 𝐿(𝜌). There is a rich theory about this material; one good source is [AGS06].

2.2 Derivation of the Continuity Equation
Recall again the continuity equation given above:

𝜕𝑡𝜌𝑡 = Div
(
𝜌𝑡 · ∇Ψ𝜌𝑡

)
.

In this statement, we mean that the PDE holds in the weak sense, in that for any "nice" (e.g. bounded, differentiable,
with bounded gradient) test function 𝜑 : ℝ𝑑 → ℝ, we have∫

𝜑 (𝜃 )𝜕𝑡𝜌𝑡 (𝜃 )𝑑𝜃 =

∫
𝜑 (𝜃 ) · div

(
𝜌𝑡 · ∇Ψ𝜌𝑡

)
(𝜃 )𝑑𝜃 (★)

We formulate this as being satisfied in the weak sense because differentiable solutions to (★) might not exist. We
now show the derivation for this equation. Note that for 𝜃𝑡 ∽ 𝜌𝑡 ,

LHS of (★) = 𝜕

𝜕𝑡
𝔼
[
𝜑

(
𝜃𝑡

)]
= 𝔼

[〈
∇𝜑

(
𝜃𝑡

)
,
𝑑

𝑑𝑡
𝜃𝑡

〉]
(differentiate under integral)

=

∫ 〈
∇𝜑 (𝜃 ),−∇Ψ𝜌𝑡 (𝜃 )

〉
𝑑𝜌𝑡 (𝜃 ) (gradient flow for 𝜃𝑡 )

= −
∫ 〈
∇𝜑 (𝜃 ),∇Ψ𝜌𝑡 (𝜃 )

〉
𝑑𝜌𝑡 (𝜃 )

= RHS of (★) (integration by parts)
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2.3 Non-asymptotic Convergence to the Mean-Field Limit
We use a method known as the "Propagation of chaos." Some original references are by Kac in 1956, McKean in
1969, and Sznitman in 1991; a comprehensive reference is in [CD22]. We want to compare (𝜃 (𝑘 )

𝑖
)𝑘=0,1,2... and(

𝜃 𝑡𝑖

)
𝑡≥0

, where the first are the gradient descent iterates given by 𝜃 (𝑘+1)
𝑖

← 𝜃
(𝑘 )
𝑖
− ℎ∇𝐿(𝜃 (𝑘 ) ), and the second

are the mean-field iterates given by 𝑑𝜃 𝑡𝑖 = −∇𝐿𝜌𝑡 (𝜃 𝑡𝑖 )𝑑𝑡, where 𝜌𝑡 = law(𝜃 𝑡𝑖 ) . Note that

𝜃
(𝑘 )
𝑖

= 𝜃
(0)
𝑖
+ 2ℎ

𝑘−1∑︁
𝑙=0

𝐹𝑖

(
𝜃 (𝑙 ) ; (𝑥𝑙+1, 𝑦𝑙+1)

)
𝜃 𝑡𝑖 = 𝜃

(0)
𝑖
+ 2

∫ 𝑡

0
𝐺

(
𝜃𝑠𝑖 ; 𝜌𝑠

)
𝑑𝑠

for 𝐹𝑖 (𝜃 ; (𝑥,𝑦)) ≜ (𝑦 − 𝑓𝜃 (𝑥))·∇𝜃𝑖𝜎 (𝑥 ;𝜃𝑖),𝐺 (𝜃 ; 𝜌) ≜ −∇Ψ𝜌 (𝜃 ) . The ultimate goal is to upper bound



Θ̄𝑘ℎ

𝑖 − 𝜃
(𝑘 )
𝑖




.
To do so, will bound by a self-similar expression of the form

(small terms) +
∫ 𝑘ℎ

0




𝜃𝑠𝑖 − 𝜃 ( ⌊𝑠/ℎ⌋ )𝑖




𝑑𝑠.
This will imply (by Grönwall’s inequality), the desired bound.

Now, let [𝑆] = ℎ · ⌊𝑠/ℎ] and consider


𝜃𝑘ℎ𝑖 − 𝜃𝑘𝑖 



= 2






∫ 𝑘ℎ

0
𝐺

(
𝜃𝑠𝑖 ; 𝜌𝑠

)
𝑑𝑠 − ℎ

𝑘−1∑︁
𝑙=0

𝐹𝑖

(
𝜃 (𝑙 ) ; (𝑥𝑙+1, 𝑦𝑙+1)

)





≤ 2






∫ 𝑘ℎ

0

[
𝐺

(
𝜃𝑠𝑖 ; 𝜌𝑠

)
−𝐺

(
𝜃
[𝑠 ]
𝑖

; 𝜌 [𝑠 ]
)]

𝑑𝑠






 (1)

+ 2





∫ 𝑘ℎ

0

[
𝐺

(
𝜃
[𝑠 ]
𝑖

; 𝜌 [𝑠 ]
)
−𝐺

(
𝜃
( ⌊𝑠/ℎ⌋ )
𝑖

; 𝜌 [𝑠 ]
)]

𝑑𝑠






 (2)

+ 2





ℎ 𝑘−1∑︁

𝑙=0

[
𝐺

(
𝜃
(𝑙 )
𝑖

; 𝜌𝑙ℎ
)
− 𝐹𝑖

(
𝜃 (𝑙 ) ; (𝑥𝑙+1, 𝑦𝑙+1)

)]




 (3)

We first bound term (1) (easy). This term is small because because𝐺 is Lipschitz by assumption, and we can show
𝑓 varies smoothly over time so that 𝜌𝑠 and 𝜌 [𝑠 ] are close. Term (2) is bounded by the Lipschitzness of 𝐺:


𝐺 (

𝜃𝑠𝑖 ; 𝜌 [𝑠 ]
)
−𝐺

(
𝜃
( ⌊𝑠/ℎ⌋ )
𝑖

; 𝜌 [𝑠 ]
)


 ≲ 


𝜃𝑠𝑖 − 𝜃 ( ⌊𝑠/ℎ⌋ )𝑖




 ,
so (2) is bounded by ∫ 𝑘ℎ

0




𝜃𝑠𝑖 − 𝜃 ( ⌊𝑠/ℎ⌋ )𝑖




︸            ︷︷            ︸
looks analogous
to what we want

to bound on the LHS

𝑑𝑠

Now to bound (3), consider
𝑘−1∑︁
𝑙=0

[
𝐺

(
𝜃
(𝑙 )
𝑖

; 𝜌𝑙ℎ
)
− 𝐹𝑖

(
𝜃 (𝑙 ) ; (𝑥𝑙+1, 𝑦𝑙+1)

)]
.

The key idea is to note that 𝐹𝑖
(
𝜃 (𝑙 ) ; (𝑥𝑙+1, 𝑦𝑙+1)

)
has expectation𝐺

(
𝜃
(𝑙 )
𝑖

; 𝜌𝑙
)
, where 𝜌𝑙 is the empirical distribution

of 1
𝑁

∑𝑁
𝑖=1 𝛿𝜃 (𝑙 )

𝑖

. Then, over many steps 𝑙 , the total deviation between the 𝐹𝑖
(
𝜃 (𝑙 ) ; (𝑥𝑙+1, 𝑦𝑙+1)

)
and the𝐺

(
𝜃
(𝑙 )
𝑖

; 𝜌𝑙
)

is of order ℎ
√︁
𝑘𝑝 by Martingale concentration. Then, replacing 𝐹𝑖 with its expectation, it remains to bound
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𝑘−1∑︁
𝑙=0

[
𝐺

(
𝜃
(𝑙 )
𝑖

; 𝜌𝑙ℎ
)
−𝐺

(
𝜃
(𝑙 )
𝑖

; 𝜌𝑙
)]

=
1
𝑁

𝑘−1∑︁
𝑙=0

𝑁∑︁
𝑗=1

[
𝔼𝜃𝑈

(
𝜃
(𝑙 )
𝑖

, 𝜃 𝑙ℎ𝑗

)
−𝑈

(
𝜃
(𝑙 )
𝑖

, 𝜃
(𝑙 )
𝑗

)]
Again, by Martingale concentration we can essentially replace 𝔼𝜃𝑈 (𝜃

(𝑙 )
𝑖

, 𝜃 𝑙ℎ𝑗 ) (deterministic) with 𝑈 (𝜃 (𝑙 )
𝑖

, 𝜃 𝑙ℎ𝑗 )
(random). Then, we use Lipschitzness of 𝑈 to get

1
𝑁

𝑘−1∑︁
𝑙=0

𝑁∑︁
𝑗=1




𝑈 (
𝜃
(𝑙 )
𝑖

, 𝜃 𝑙ℎ𝑗

)
−𝑈

(
𝜃
(𝑙 )
𝑖

, 𝜃
(𝑙 )
𝑗

)



≤ 1

𝑁

𝑘−1∑︁
𝑙=0

𝑁∑︁
𝑗=1




𝜃 𝑙ℎ𝑗 − 𝜃 (𝑙 )𝑗 


 .

Once again, this last term looks similar to what we want to bound. This yields the self-similar equation we sought
after.

2.4 Note on the PDE when the Data Distribution has Symmetries
When data distribution has symmetries, PDE simplifies considerably. Suppose that the training data {(𝑥𝑖 , 𝑦𝑖)}
satisfies 𝑥𝑖 ∼ 𝑁 (0, 𝐼 ) and 𝑦𝑖 = 𝜑 (Π𝑥 ) where Π is a projection to a low-dimensional subspace 𝑉 ∗.

Then the joint dist over (𝑥,𝑦) is invariant under rotations of 𝑥 that preserve𝑉 ∗, ie. 𝑅𝑣 ∈ 𝑉 ∗ ∀𝑣 ∈ 𝑉 ∗. Consider
this observation: Let 𝑅 be such a rotation. If 𝜌0 and 𝜌 ′0 are two different initializations of the weights related by
𝜌 ′0 = 𝑅#𝜌0 (i.e., to sample (𝑎′,𝑤 ′) from 𝜌 ′0, one can sample (𝑎,𝑤) from 𝜌0 and then take 𝑎′ = 𝑎,𝑤 ′ = 𝑅𝑤)), then
𝜌 ′𝑡 = 𝑅#𝜌𝑡 .

Hence, if 𝜌0 is rotation-invariant, then 𝜌𝑡 is invariant to rotations preserving 𝑉 ∗ for any 𝑡 ≥ 0! 𝜌𝑡 is thus
completely specified by the distribution on

©­­­«𝑎, Π𝑤︸︷︷︸
®𝑠

,


Π1𝑤




2︸   ︷︷   ︸

𝑟

ª®®®¬ ,
i.e., we get a dim (𝑉 ∗) + 2 dimensional PDE! Then denoting the distribution, or (𝑎, ®𝑠, 𝑟 ) by 𝜌𝑡 , we have

𝜕𝑡𝜌𝑡 = div
(
𝜌𝑡 · ∇®𝑠Ψ𝜌𝑡

)
+ 𝜕𝑎

(
𝜌𝑡 · 𝜕𝑎Ψ𝜌𝑡

)
+ 1
𝑟
𝜕𝑟

(
𝑟 · 𝜌𝑡 · 𝜕𝑟 Ψ̄𝜌𝑡

)
.

3 Analysis of the Mean-Field Theory
Recall that the game plan for understanding training dynamics of overparameterized neural networks was

1. Define the limiting object.

2. Show that we quickly converge to the limiting object as 𝑁 →∞.

3. Prove optimization/generalization guarantees for limiting object.

3.1 Theorems Regarding Speed of Convergence
Works such as [MMN18] and [MMM19] address this second point. One theorem that they proved is:
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Theorem 1 (Mei-Montanari-Nguyen ’18). Assumptions: (1) ∇𝑉 ,∇𝑈 bounded Lipschitz, (2) 𝜎 bounded, (3)
∇𝜃𝜎 (𝑥 ;𝜃 ) has sub-Gaussian tails.

Then let (𝜃 (𝑘 ) )𝑘=0,1,2,... denote iterates of gradient descent with step size ℎ and let (𝜃 𝑡 )𝑡≥0 denote mean-field
gradient flow. Then with probability 1 − 𝛿 in the randomness of the initialization and the training examples,

max
𝑖∈[𝑁 ]

sup
𝑘=0,...,𝑇 /ℎ




𝜃 (𝑘 )𝑖
− 𝜃𝑘ℎ𝑖





2

≲ 𝑒𝑂 (𝑇 ) ·
√︁
max(1/𝑁,ℎ) · [

√︁
𝑝 + log(𝑁 max(1,𝑇 /ℎ)) +

√︁
log 1/𝛿]

3.2 Theorems Regarding Asymptotics
Regarding the third point above, it is in general quite difficult to prove things about the PDE. The current
understanding is largely limited to asymptotics, toy examples (e.g., generalized linear models), and experiments.
One example is from [CB18], from which there is the following information theorem about the evolution of 𝐿(𝜌𝑡 )
in noiseless gradient descent.

Theorem 2. Suppose that 𝜎 is sigmoid or ReLU, and the distribution over 𝑥 has finite fourth-order moments. If the
support of the random initialization is chosen appropriately and the distribution over 𝑥 satisfies certain a certain
“Sard-type regularity” condition, then if 𝜌𝑡 → 𝜌∞, then 𝜌∞ is a global minimizer of 𝐿(𝜌) .

The proof of this theorem exploits facts from the Wasserstein gradient flow, as well as homogeneity/partial
homogeneity of the activation function. Follow-up works include [NP23] and [EW21].

Another theorem regarding asymptotics is the evolution of 𝐿 (𝜌𝑡 ).

Theorem 3 ([MMN18] (informal)). The theorem extends the mean-field picture to "noisy gradient descent", i.e.
𝜃 ← (1 − 2𝜆𝜂) · 𝜃 − 2𝜂 · ∇𝐿(𝜃 ) + 𝑁 (0, 𝜂/𝛽). As 𝑡 →∞, the resulting continuity PDE converges to minimizer of the
regularized loss (free energy)

𝐹𝛽,𝜆 (𝜌)
def
= 𝐿(𝜌)/2 + (𝜆/2) · 𝔼𝜌

[
∥𝜃 ∥2

]
− 𝛽−1 Ent(𝜌)

In fact, limit distribution satisfies
𝜌∞(𝜃 ) ∝ exp

(
−𝛽Ψ (𝜆)𝜌∞ (𝜃 )

)
3.3 Toy Models
One setting in which the continuity PDE greatly simplifies is when the underlying data distribution has symmetries.
For instance, suppose that the 𝑥 ’s are Gaussian and that 𝑦 = 𝜙 (⟨𝑤∗, 𝑥⟩) (the single index model), so that the
function secretly only depends on a 1D subspace. Recall this is a setting that kernel methods perform terribly at
because they fail to efficiently learn the relevant feature ⟨𝑤∗, ·⟩. Then, because data distribution is invariant to
any rotation that preserves 𝑤∗, the PDE simplifies dramatically! In such settings where symmetries drastically
reduce the dimension of the PDE, we can numerically solve it and obtain sharp predictions. The following is an
example from [ABAM22]. Another example is from [MMN18]. In this paper, the context is classifying isotropic
Gaussians. The data is a mixture of {

𝑥 ∼ 𝑁
(
0, (1 + Δ)2 · Id𝑑

)
𝑦 = 1

𝑥 ∼ 𝑁
(
0, (1 − Δ)2 · Id𝑑

)
𝑦 = −1

In this case, the reduced PDE is 1-dimensional (only need to track distribution of ∥𝜃 ∥2), and they obtain rigorous
end-to-end guarantees for this problem.

Another example is [BMZ23]. In this paper, the continuity PDE is for learning 𝑓 (𝑥) = 𝜙 (⟨𝑤∗, 𝑥⟩) for 𝜙 (𝑧) =
He0(𝑧) − He1(𝑧) + 2

3He2(𝑧) using a one-hidden-layer ReLU network over Gaussian examples. They demonstrate
two empirically observed phenomena: (1) plateaus in the loss curve, interspersed with sharp drops and (2) longer
and longer time scales. A key (partially rigorous) finding is that the mean field gradient flow incrementally learns
low-degree Hermite components of single index models.
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Currently, the only “end-to-end” non-asymptotic, global convergence result for learning single-index models
with ”standard” gradient descent (no layerwise training, no weird learning rate schedules, no sharp gradient
clipping, etc.) is

Theorem 4 ([MHD+23] (informal)). Projected gradient descent on a one-hidden-layer student network with quartic
polynomial activations and polynomial width learns certain functions of the form 𝑦 = 𝑝 (⟨𝑤∗, 𝑥⟩), where 𝑝 is a
degree-4 polynomial, over Gaussian inputs using 𝑂 (𝑑3.1) samples.

3.4 CSQ Revisited
It’s helpful to keep inmindwhat is generally possible (by any algorithm). Consider single indexmodels (𝑦 = 𝜙 (⟨𝑤∗, 𝑥⟩)),
where the complexity of CSQ algorithms is dictated by the "information exponent," which is the smallest 𝑠 for
which the 𝑠-th Hermite coefficient of 𝜙 is nonzero.

As examples, [AGJ21] shows that online SGD on single neuron learns in time 𝑑𝑆 . [ABAM23] generalizes ("leap
complexity") to multi-index models ( 𝑦 = 𝜙 (Π𝑊 𝑥) ), layerwise training of overparametrized model learns in
time 𝑑 leap . These are optimal for CSQ algorithms (next unit: lower bound), but there are more efficient non-CSQ
algorithms (filtered PCA) that achieve 𝑂 (𝑑) sample complexity and (fixed) polynomial runtime [CM20].
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