
CS 2243 Fall 2024 Scribes: <names>
10/09 Based on notes by: Xiaodong Yang

Lecture 11: Linearized Networks

1 Introduction
Gradient Descent. Given i.i.d. samples {(𝑥𝑖 , 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝑛} drawn from some distribution on ℝ𝑑 ×ℝ, we set
up a student network 𝑓𝜃 (𝑥) and initialize the parameters 𝜃 randomly. Then we run gradient descent on the
empirical loss 𝐿(𝜃 ) = 1

𝑛

∑𝑛
𝑖=1 (𝑓𝜃 (𝑥𝑖) − 𝑦𝑖)2,

𝜃 ← 𝜃 − 𝜂 · ∇𝐿(𝜃 ),

until convergence. Variants of this gradient method include: full-batch, mini-batch, online, adaptive step size, etc.
Here we focus on one hidden layer student networks (which already accounts for overwhelming majority of the
literature): for 𝜃 = {𝜃𝑖 }𝑁𝑖=1 where 𝜃𝑖 = (𝑎𝑖 ,𝑤𝑖), define

𝑓𝜃 (𝑥) = 𝛾
𝑁∑︁
𝑖=1

𝑎𝑖 · 𝜎 (⟨𝑤𝑖 , 𝑥⟩),

where 𝜎 (·) is a fixed 1D activation, 𝛾 is a fixed scaling parameter. We extract 𝛾 from the (𝑎1, . . . , 𝑎𝑁 ) mainly to
see how scaling shapes the training dynamics. In practice, 𝑁 is taken to be very large, often much larger than 𝑑
(overparametrization). Two mysteries emerge from practice.

1. Optimization. Empirical loss is a (highly) non-convex function. Yet we are able to efficiently converge to zero
empirical loss (i.e. perfectly fit all the training data). See Figure 1a for an illustration of the non-convex
landscape.

2. Generalization. Highly overparametrized models trained to achieve zero empirical loss also achieve small test
loss, i.e. they do not overfit! Figure 1b (taken from [ZBH+16]) displays the generalization ability of deep
networks under label corruption.

(a) Empirical Loss Optimization Landscape (b) Generalization under Label Corruption

Figure 1: Mysteries of GD Training

Thereafter, we have to exploit overparametrization in the analysis. As empirical evidence suggests “the more
parameters the better”, we come up with the following hypothesis:
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As number 𝑁 of parameters tending to infinity, training dynamics converge to a limiting process
with the desired optimization / generalization properties. The only role of overparametrization is
to bring us closer and closer to this limiting process.

For provable guarantees, it suffices to (i) bound error in approximating limiting process in terms of 𝑁 ; (ii)
prove limiting process converges quickly to small train/test error. In this and next lectures, we will see two regimes
in which people have tried implementing this recipe:

1. Lazy Training/ linearized neural networks/ kernel limit: Network is well approximated by its first order
Taylor expansion around the parameters at initialization. But this regime is bottlenecked at kernel methods.
Related works include [JGH18, DZPS18, DLL+19, AZLS19, ZCZG20, COB19].

2. Non-lazy training / feature learning regime / mean field limit: Training dynamics are highly nonlinear.
Learned features (i.e. first layer weights) are very different from those at initialization. Related works
include [MMN18, AZL22].

In this lecture, we would focus on the first regime.

1.1 Linearized Networks
Suppose parameters at initialization are given by 𝜃0𝑖 = (𝑎0𝑖 ,𝑤0

𝑖 ). Take 𝜃 = 𝜃0 + Δ to deviate from the initialization
a little,

𝜃𝑖 =
(
𝑎0𝑖 + [Δ𝑎𝑖],𝑤0

𝑖 + [Δ𝑤𝑖]
)
.

Then the Taylor expansion of 𝑓𝜃 around 𝜃0 is given by

𝑓𝜃 = 𝑓𝜃0 + ⟨Δ,∇𝜃 𝑓𝜃 ⟩ + · · ·

= 𝑓𝜃0 + 𝛾
𝑁∑︁
𝑖=1

[Δ𝑎𝑖] · 𝜎 (⟨𝑤0
𝑖 , ·⟩)︸                       ︷︷                       ︸

random features model

+𝛾
𝑁∑︁
𝑖=1

𝑎0𝑖 ⟨[Δ𝑤𝑖], ·⟩ · 𝜎 ′ (⟨𝑤0
𝑖 , ·⟩)︸                                 ︷︷                                 ︸

neural tangent model

+ · · ·

Therefore, we formally define random feature maps by

𝜙RF(𝑥) = 𝛾 ·
(
𝜎 (⟨𝑤0

1, 𝑥⟩); . . . ;𝜎 (⟨𝑤0
𝑁 , 𝑥⟩)

)
;

and neural tangent feature maps by

𝜙NT(𝑥) =
𝛾
√
𝑑
·
(
𝑎01𝜎

′ (⟨𝑤0
1, 𝑥⟩) · 𝑥⊤; . . . ;𝑎0𝑁𝜎

′ (⟨𝑤0
𝑁 , 𝑥⟩) · 𝑥

⊤) .
These are random functions whose parameters only depend on the weights of the network at initialization. Given
this notion, the previous expansion is reinterpreted into

𝑓𝜃+Δ (𝑥) = 𝑓𝜃0 (𝑥) + ⟨𝜙RF(𝑥), [Δ𝑎]⟩ +
√
𝑑 · ⟨𝜙NT(𝑥), [Δ𝑤]⟩ .

1.2 Interlude: Kernel Methods
Let us first understand the generalization properties of “non-deep learning” a.k.a. kernel ridge regression. Given
feature map Φ and dataset {(𝑥𝑖 , 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝑛}, our goal is to run regularized linear regression on the pairs
{( ®Φ𝑖 , 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝑛}, where ®Φ𝑖

def
= Φ(𝑥𝑖):

min
𝑏

𝑦 − ®Φ𝑏2 + 𝜆∥𝑏∥2.
This admits an explicit solution:

𝑏∗(𝜆) def= ®Φ⊤
(
𝜆Id𝑛 + ®Φ®Φ⊤

)−1
𝑦
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Given an input 𝑥 , the prediction for its label is given by ⟨𝑏∗(𝜆),Φ(𝑥)⟩. So called kernel trick is the fact that
prediction can be made even if feature map is only given implicitly. Define the kernel function

𝐾 (𝑥1, 𝑥2)
def
= ⟨Φ(𝑥1),Φ(𝑥2)⟩ .

Then for
𝐾 (𝑥, ·) def= (𝐾 (𝑥, 𝑥1), . . . , 𝐾 (𝑥, 𝑥𝑛))

and the empirical kernel matrix
𝐾𝑛

def
=

(
𝐾 (𝑥𝑖 , 𝑥 𝑗 )

)𝑛
𝑖,𝑗=1 ,

the prediction is represented by

⟨𝑏∗(𝜆),Φ(𝑥)⟩ = 𝐾 (𝑥, ·)⊤ (𝜆Id𝑛 + 𝐾𝑛)−1 𝑦.

In conclusion, we only need to know 𝐾 (·, ·), i.e. how to compute inner products in feature space! Going back to
neural networks, for finite 𝑁 , we have the following two kernel functions: random features

𝐾RF
𝑁 (𝑥1, 𝑥2) = 𝛾

2
𝑁∑︁
𝑖=1

𝜎 (⟨𝑤0
𝑖 , 𝑥1⟩) · 𝜎 (⟨𝑤0

𝑖 , 𝑥2⟩),

and neural tangent features:

𝐾NT
𝑁 (𝑥1, 𝑥2) =

𝛾2

𝑑

𝑁∑︁
𝑖=1

⟨𝑥1, 𝑥2⟩ · 𝜎 ′ (⟨𝑤0
𝑖 , 𝑥1⟩) · 𝜎 ′ (⟨𝑤0

𝑖 , 𝑥2⟩).

We want to take 𝑁 →∞, so take the scaling 𝛾 = 1√
𝑁
. As 𝑁 →∞, these two kernels respectively have limit

𝐾RF
𝑁 (𝑥1, 𝑥2) → 𝔼𝑤 [𝜎 (⟨𝑤, 𝑥1⟩)𝜎 (⟨𝑤, 𝑥2⟩)] = 𝐾RF(𝑥1, 𝑥2),

𝐾NT
𝑁 (𝑥1, 𝑥2) →

1
𝑑
𝔼𝑤 [⟨𝑥1, 𝑥2⟩ · 𝜎 ′ (⟨𝑤, 𝑥1⟩) · 𝜎 ′ (⟨𝑤, 𝑥2⟩)] = 𝐾NT(𝑥1, 𝑥2) .

If, e.g., 𝑤 ∼ N (0, Id/𝑑), these two kernels are both rotationally invariant: 𝐾 (𝑥, 𝑥 ′) only depends on ∠(𝑥, 𝑥 ′).

Example: One example of which we can prove a generalization bound is: 𝑥𝑖 ∼
√
𝑑 · 𝕊𝑑−1 and 𝑦𝑖 = 𝑓 (𝑥𝑖) for some

arbitrary 𝑓 such that ∥ 𝑓 ∥𝐿2 = 1. And we have the following theorems.

Theorem 1 (informal version of [GMMM21]). For any rotationally invariant kernel with non-vanishing Hermite
coefficients at all degrees, if 𝑑𝑙+𝛿 ≪ 𝑛 ≪ 𝑑𝑙+1−𝛿 for integer 𝑙 and small constant 𝛿 , then for any sufficiently small
𝜆>0, kernel ridge regression achieves test loss

∥P>𝑙 𝑓 ∗∥2 + 𝑜𝑑 (1),

where P>𝑙 is the projection to orthogonal complement of subspace of degree-≤ 𝑙 polynomials.

See Figure 2 for an illustration of the polynomial projection. We can also use off-the-shelf matrix concentration
inequalities to quantify convergence of empirical kernel to limiting kernel.

Theorem 2 (informal version of [MZ22]). For the neural tangent kernel, with high probability over 𝑥𝑖 ’s and 𝑤𝑖 ’s,
there holds 𝐾−1/2𝐾𝑁𝐾

−1/2 − Id𝑛

𝑜𝑝
≤ 𝑂

(√︂
𝑛 + 𝑑
𝑁𝑑

)
.

As long as the number 𝑁𝑑 of parameters is much larger than number 𝑛 of samples, the limiting object is
accurate. Similar picture holds for random features. And this proof is based on applying matrix Bernstein inequality.
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Figure 2: Polynomial Projection

1.3 Back to Gradient Descent
Previous section mainly discusses the performance of a linearized network

𝑓 lin
𝜃
(𝑥) = 𝑓𝜃0 (𝑥) + 𝛾

𝑁∑︁
𝑖=1

(𝑎𝑖 − 𝑎0𝑖 ) · 𝜎 (⟨𝑤0
𝑖 , 𝑥⟩) + 𝛾

𝑁∑︁
𝑖=1

𝑎0𝑖 ⟨𝑤𝑖 −𝑤0
𝑖 , 𝑥⟩ · 𝜎 ′ (⟨𝑤0

𝑖 , 𝑥⟩).

We have to examine training dynamics of gradient methods to understand the difference

1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓𝜃 (𝑥𝑖))2︸                  ︷︷                  ︸
deep learning

v.s.
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓 lin𝜃
(𝑥𝑖))2︸                    ︷︷                    ︸

linear regression

.

Theorem 3 (informal version of [DZPS18, DLL+19, AZLS19, ZCZG20, COB19]). When 𝛾 ≫ 1/𝑁 , the trajectories
of gradient flow for training 𝑓𝜃 versus 𝑓 lin

𝜃
are vanishingly close as 𝑁 →∞.

Figure 3: Approximation Error in Kernel Regime for ReLU Labels

We hereby also provide a simple negative example in which the kernel method does not suffice to conclude
the empirical success of deep learning. Consider labels generated by 𝑓 (𝑥) = ReLU(⟨𝑤∗, 𝑥⟩). It is shown that
polynomial regression (and by extension any kernel method, as well as GD in NTK regime) requires 𝑑poly(1/𝜖 )
samples to learn to error 𝜖. See Figure 3 for an illustration of the implication of Theorem 1 onto this example of
ReLU labels. However, as suggested by the following theorem, a single-neuron student network should already
suffice to learn this example.
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Theorem 4. With 𝑂 (𝑑) samples, gradient descent for a one-hidden-layer student network with a single neuron
converges exponentially quickly for this problem (for Gaussian inputs).

This phenomenon is possibly due to that we have to choose 𝛾 ∝ 1
𝑁

to stay in the kernel regime. And this
regime does not perfectly match the true dynamics which practical gradient method is really going through. We
will talk about the scaling 𝛾 ∝ 1

𝑁 2 (a.k.a. the mean field regime) in next lecture.

2 NTK Analysis
The rest of this lecture is devoted to provide details to the NTK analysis. In fact we will prove a generic result
that does not even need the assumption that the student network is a one-hidden-layer MLP. This proof is mainly
adapted from [COB19] and Telgarsky’s Lecture Note. Consider a dataset {(𝑥𝑖 , 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝑛} and a student
network 𝑓𝜃 : ℝ𝑑 → ℝ, 𝜃 ∈ ℝ𝑝 initialized to some 𝜃0. Use short hand 𝑓𝜃 (𝑥) − 𝑦 to denote

(𝑓𝜃 (𝑥1) − 𝑦1, . . . , 𝑓𝜃 (𝑥𝑛) − 𝑦𝑛) .

Define a scaling parameter by 𝛼 > 0 and empirical loss

𝐿(𝑔) = 1
2
∥𝑔(𝑥) − 𝑦∥22, 𝐿0 = 𝐿(𝛾 𝑓𝜃0) .

Consider the gradient flow

d𝜃𝑡 = −∇𝜃𝐿(𝛾 𝑓𝜃𝑡 )d𝑡
= −𝛾 𝐽⊤𝑡 ∇𝜃𝐿(𝛾 𝑓𝜃𝑡 )d𝑡,

where the Jacobian 𝐽𝑡 is taken as

𝐽𝑡 = 𝐽𝜃𝑡 =

©«
∇𝜃 𝑓𝜃𝑡 (𝑥1)
∇𝜃 𝑓𝜃𝑡 (𝑥2)
· · ·

∇𝜃 𝑓𝜃𝑡 (𝑥𝑛)

ª®®®¬ ∈ ℝ
𝑛×𝑝 .

We will compare it to linearized network / dynamics:

𝑓 lin
𝜃
(𝑥) = 𝑓𝜃0 (𝑥) + 𝐽0 · (𝜃 − 𝜃0),
d𝜃𝑡 = −𝛾 𝐽⊤0 ∇𝜃𝐿(𝛾 𝑓 lin𝜃𝑡

)d𝑡,

in which Jacobian 𝐽0 does not change over training. We assume the following conditions:

1). 𝐽𝜃 is Lipschitz in 𝜃 , i.e.
∥ 𝐽𝜃 − 𝐽𝜃 ′ ∥𝑜𝑝 ≤ 𝛽 ∥𝜃 − 𝜃 ′∥2.

2). initialized Jacobian 𝐽𝜃0 is of full rank (and our bounds will depend on 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 of 𝐽0).

As shown by the following lemma, linearized dynamics are very easy to analyze.

Lemma 1. If 𝑄 (𝑡) ⪰ 𝜆Id𝑛 for all 𝑡 , then for (𝑔𝑡 ) given by

d𝑔𝑡 = −𝑄 (𝑡)∇𝐿(𝑔𝑡 )d𝑡,

we have
𝐿(𝑔𝑡 ) ≤ 𝐿(𝑔0) · exp(−2𝜆𝑡) .

Proof. It follows chain rule that

d
d𝑡
𝐿(𝑔𝑡 ) = ⟨−𝑄 (𝑡)∇ −𝑄 (𝑡) (𝑔𝑡 (𝑥) − 𝑦), 𝑔𝑡 (𝑥) − 𝑦⟩

≤ −𝜆∥𝑔𝑡 (𝑥) − 𝑦∥22
= −2𝜆 · 𝐿(𝑔𝑡 ) .

Then integrating over it (i.e. using Gronwall’s inequality) completes this proof. □
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For the linearized dynamics
d𝜃𝑡 = −𝛾 𝐽⊤0 ∇𝜃𝐿(𝛾 𝑓 lin𝜃𝑡

)d𝑡,

chain rule implies

d
d𝑡

(
𝛾 𝑓 lin

𝜃𝑡

)
= 𝛾∇𝜃 𝑓 lin𝜃𝑡

��
𝜃=𝜃𝑡

d𝜃𝑡
d𝑡

= −𝛾2 𝐽0 𝐽⊤0 ∇𝜃𝐿(𝛾 𝑓 lin𝜃𝑡
) .

So we can apply 𝑄 (𝑡) = 𝐽0 𝐽⊤0 and 𝑔𝑡 = 𝛾 𝑓 lin
𝜃𝑡

to find

𝐿(𝛾 𝑓 lin
𝜃𝑡
) ≤ exp

(
−2𝛾2𝑡𝜎𝑚𝑖𝑛 (𝐽0)

)
.

Unsurprisingly, training loss for linearized network drops exponentially fast. We will complete this NTK analysis
in next lecture.
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