
CS 2243 Fall 2024 Scribes: <names>
10/07 Based on notes by: Shi Feng

Lecture 10: Filtered PCA

Overview: This lecture focuses on the problem of learning an unknown ReLU network with respect to Gaussian
inputs. We will make several attempts to partially recover the ReLU network in this lecture and finally give an
algorithm Filtered PCA with poly(𝑑) time/samples complexity.

1 Warm-Up
We introduce the feedfoward ReLU networks at first.

Definition 1 (ReLU Networks [CKM22]). Let C𝑆 denote the concept class of (feedforward) ReLU networks over ℝ𝑑

of size 𝑆 . Specifically, 𝐹 ∈ C𝑆 if there exist weight matrices W1 ∈ ℝ𝑘1×𝑑 ,W2 ∈ ℝ𝑘2×𝑘1, . . . ,W𝐿 ∈ ℝ1×𝑘𝐿−1 for which

𝐹 (𝑥) ≜ W𝐿𝜙 (W𝐿−1𝜙 (· · ·𝜙 (W1𝑥) · · ·)) , (1)

where 𝜙 (𝑧) ≜ max(𝑧, 0) is the ReLU activation applied entrywise, and 𝑘1 + · · · + 𝑘𝐿−1 = 𝑆 . In this case we say
that 𝐹 is computed by a ReLU network with depth 𝐿. We make a necessary assumption of Lipschitzness on 𝐹 such
that |𝐹 (𝑥) − 𝐹 (𝑥 ′) | ≤ Λ ∥𝑥 − 𝑥 ′∥2. Furthermore, it is easy to verify that 𝐹 is positively homogeneous, i.e., 𝐹 (𝜆𝑥) =
𝜆𝐹 (𝑥),∀𝜆 ≥ 0, 𝑥 ∈ ℝ𝑑 .

Our task is to find an algorithm for learning the network over Gaussian inputs. Λ is required in this task even
for one-hidden-layer MLPs. One can refer to [CKM22] for this negative result. Also, in [CKM22], they give a
theorem to show the time/sample complexity of Filtered PCA algorithm we will discuss today as below.

Theorem 1 (Theorem 1.2 in [CKM22]). There is a proper algorithm (“Filtered PCA”) for learning MLPs of any depth
over Gaussian inputs to error 𝜀 in time/samples poly(𝑑) · exp(poly(𝑆,Λ, log𝐵, 1/𝜀)) where 𝐵 =

∏𝐿−1
𝑖=1 ∥W𝑖 ∥op.

In this theorem, the complexity is poly(𝑑) · exp(poly(𝑆)), which is “fixed parameter tractable” (FPT) compared
to 𝑑poly(𝑆) since in poly(𝑑) · exp(poly(𝑆)), the factor poly(𝑑) does not depend on 𝑆 . Moreover, this task is provably
not achievable by correlational statistical query algorithms including tensor methods, kernel methods, noisy
gradient descent on square loss.

Before our attempts, we introduce an observation at first. Let w1,w2, · · · ,w𝑘 be the weight vectors in the
first layer, i.e. the rows of W1. We call 𝑈 = span(w1, · · · ,w𝑘) the “relevant subspace” because by definition 𝐹 (𝑥)
should only depend on Π𝑈 (𝑥). Here, we let Π𝑈 : ℝ𝑑 → 𝑈 denote orthogonal projector to 𝑈 . If one could recover
𝑈 , then FPT can be got by projecting all data onto 𝑈 and “brute force” the network in time (1/𝜀)poly(𝑘) without
any dependence on 𝑑. Hence, our task becomes recovering the space 𝑈 . CSQ lower bound shows that in the worst
case, CSQ algorithms cannot even recover a single vector from the span 𝑈 of the input weight vectors. However,
we will see from the lecture that a “slightly non-CSQ” algorithm can find vectors in 𝑈 .

1.1 Attempt 1

In the first attempt, we create a matrix 𝑀 ≜ 𝔼[𝑦 · 𝑆2(𝑥)] where 𝑆2(𝑥) = 𝑥𝑥⊤ − I. If 𝐹 (𝑥) = ∑𝑘
𝑖=1 𝜆𝑖𝜙 (⟨w𝑖 , 𝑥⟩),

which is a MLP with only one hidden layer, we can get 𝑀 =
∑𝑘

𝑖=1 𝜆𝑖w𝑖w⊤𝑖 . If 𝑀 ≠ 0, then the top-𝑘 singular
subpace of 𝑀 would be 𝑈 . However, CSQ lower bound implies that ∃𝜆𝑖 ,w𝑖 , 𝑖 ∈ [𝑘] such that 𝑀 = 0 and more
generally, ∃𝜆𝑖 ,w𝑖 , 𝑖 ∈ [𝑘] such that

∑𝑘
𝑖=1 𝜆𝑖𝑤

⊗𝑙
𝑖

= 0 for 𝑙 ∈ [⌊𝑘/2⌋]. Intuitively, this is because 𝜆𝑖 ’s can be positive
and negative, so the matrix 𝑀 and even the tensor

∑𝑘
𝑖=1 𝜆𝑖𝑤

⊗𝑙
𝑖

can be 0 and provide no information at all.

1.2 Attempt 2
In this attempt, we extend matrix𝑀 to𝑀ℎ such that𝑀ℎ ≜ 𝔼[ℎ(𝑦) · 𝑆2(𝑥)] where ℎ : ℝ→ ℝ is a “filter” function.
We prove a lemma at first.

1

Lemma 1. The kernel of 𝑀ℎ, ker(𝑀ℎ), contains the orthogonal component 𝑈 ⊥ of 𝑈 in ℝ𝑑 .

Proof. In order to prove this, we need to prove that for w ∈ 𝑈 ⊥, 𝑀ℎw = 0. We only need to prove w⊤𝑀ℎw = 0
and w′⊤𝑀ℎw = 0 for any w′ ⊥ w. Suppose ∥w∥2 = ∥w′∥2 without loss of generality.

For the first part, we have w⊤𝑀ℎw = 𝔼[ℎ(𝑦) (⟨w, 𝑥⟩2 − 1)]. We know that if two vectors v, v′ ∈ ℝ𝑑 and v ⊥ v′,
Πv (𝑔) and Πv′ (𝑔) are independent random variables for any 𝑔 ∼ N (0, I). Since 𝑦 depends on 𝑥 only through
Π𝑈 (𝑥), whereas ⟨w, 𝑥⟩2 depends on 𝑥 only through projection to w ∈ 𝑈 ⊥, so ℎ(𝑦) and ⟨w, 𝑥⟩2 are independent.
Hence, we can deduce that

w⊤𝑀ℎw = 𝔼[ℎ(𝑦) (⟨w, 𝑥⟩2 − 1)]
= 𝔼[ℎ(𝑦)]𝔼[(⟨w, 𝑥⟩2 − 1)]
= 𝔼[ℎ(𝑦)]𝔼𝑔∼N (0,1) [𝑔2 − 1)]
= 0.

For the second part, we have w′⊤𝑀ℎw = 𝔼[ℎ(𝑦) (⟨w′, 𝑥⟩⟨w, 𝑥⟩ − ⟨w,w′⟩)] = 𝔼[ℎ(𝑦) (⟨w′, 𝑥⟩⟨w, 𝑥⟩)] because
w ⊥ w′. Similarly, because ℎ(𝑦)⟨w′, 𝑥⟩ depends on 𝑥 only through Π𝑈 (𝑥), whereas ⟨w, 𝑥⟩ depends on 𝑥 only
through projection to w ∈ 𝑈 ⊥, so ℎ(𝑦)⟨w′, 𝑥⟩ and ⟨w, 𝑥⟩ are independent. We can deduce that

w′⊤𝑀ℎw = 𝔼[ℎ(𝑦) (⟨w′, 𝑥⟩⟨w, 𝑥⟩)]
= 𝔼[ℎ(𝑦)⟨w′, 𝑥⟩]𝔼[⟨w, 𝑥⟩]
= 0.

Until now, our lemma is proved. □

Using this lemma, we can further prove a corollary.

Corollary 1. If 𝑀ℎ ≠ 0, then the top singular vector of 𝑀ℎ lies in 𝑈 .

Proof. The top singular vector of 𝑀ℎ should be orthogonal to ker(𝑀ℎ) when 𝑀ℎ ≠ 0. Since 𝑈 ⊥ ⊆ ker(𝑀ℎ), we
know that the top singular vector of 𝑀ℎ should be orthogonal to 𝑈 ⊥ so in 𝑈 . □

Therefore, if we can prove 𝑀ℎ ≠ 0 for some ℎ, we can use this method to find one vector in 𝑈 . We take
ℎ(𝑦) = 𝑦2 then we can prove the following lemma.

Lemma 2. When ℎ(𝑦) = 𝑦2, the matrix 𝑀ℎ satisfies Tr(𝑀ℎ) ≠ 0.

Proof. Since ℎ(𝑦) = 𝑦2, we can deduce that

Tr(𝑀ℎ) = 𝔼[ℎ(𝑦) · (∥𝑥 ∥22 − 𝑑)]
= 𝔼[𝑦2(∥𝑥 ∥22 − 𝑑)]
= 𝔼[𝐹 (𝑥)2 · (∥𝑥 ∥22 − 𝑑)] .

We “factorized” 𝑥 ∼ N (0, I) into two random variables 𝑧 ∼ S𝑑−1 and 𝑟 ∼ distribution of norm of Gaussian vector
sampled from N (0, I) (chi-squared distribution X 2

𝑑
). 𝑧 represents the direction and 𝑟 represents the magnitude

and they are independent by definition. 𝑥 is given by
√
𝑟𝑧. Hence, we have

Tr(𝑀ℎ) = 𝔼[𝐹 (𝑥)2 · (∥𝑥 ∥22 − 𝑑)]
= 𝔼𝑟 [(𝑟2 − 𝑑) · 𝔼𝑧 [𝐹 (𝑟 · 𝑧)2]]
= 𝔼𝑟 [𝑟2(𝑟2 − 𝑑) · 𝔼𝑧 [𝐹 (𝑧)2]] (by positively homogeneous of 𝐹)

= 𝔼𝑟 [𝑟2(𝑟2 − 𝑑)]𝔼𝑧 [𝐹 (𝑧)2] .

2

We know that 𝔼𝑧 [𝐹 (𝑧)2] > 0 because 𝐹 ≠ 0. Otherwise, the problem has a trivial solution. For 𝔼𝑟 [𝑟2(𝑟2 −𝑑)], we
have

𝔼𝑟 [𝑟2(𝑟2 − 𝑑)] = 𝔼𝑟 [𝑟4] − 𝔼𝑟 [𝑟2]𝑑
= 𝔼𝑔𝑖∼N (0,1),∀𝑖∈[𝑑] [(𝑔21 + 𝑔22 + · · · + 𝑔2𝑑)

2] − 𝑑2

=
∑︁
𝑖∈[𝑑]

𝔼𝑔𝑖∼N (0,1) [𝑔4𝑖] +
∑︁
𝑖≠𝑗

𝔼𝑔𝑖 ,𝑔𝑗∼N (0,1) [𝑔2𝑖 𝑔2𝑗] − 𝑑2

= 3𝑑 + 𝑑 (𝑑 − 1) − 𝑑2 = 2𝑑 ≠ 0.

This completes our proof. □

Using ℎ(𝑧) = 𝑧2 in attempt 2 finds one vector in 𝑈 and works for the warmup goal, but it is still unclear how
to extend it to learn remaining directions in 𝑈 .

2 Filtered PCA
In this section, we first give a function ℎ that is easier to extend to the case when we want to learn all directions
in 𝑈 . Intuitively, we only need to design a ℎ such that 𝑀ℎ = 𝔼[ℎ(𝑦) · 𝑆2(𝑥)] satisfies that ⟨Π𝑈 , 𝑀ℎ⟩ = 𝔼[ℎ(𝑦) ·
(∥Π𝑈𝑥 ∥22 − 𝑘)] is no exponentially small. Intuitively, if this is satisfied, 𝑀ℎ can provide enough information for us
to recover all directions in 𝑈 .

2.1 A Different Filter Function
In order to satisfy the condition, we want ℎ to satisfy another 3 conditions, then we prove that under these 3
conditions, ⟨Π𝑈 , 𝑀ℎ⟩ is not negligible. The conditions are:

1. ℎ(𝑧) ≥ 0 for all 𝑧 ∈ ℝ.

2. ℎ(𝐹 (𝑥)) is not identically zero.

3. ℎ(𝐹 (𝑥)) ≠ 0 if and only if ∥Π𝑈 (𝑥)∥22 ≥ 2𝑘.

With these 3 conditions, we have

⟨𝑀ℎ,Π𝑈 ⟩ = 𝔼
[
ℎ(𝐹 (𝑥)) · (∥Π𝑈𝑥 ∥22 − 𝑘) · 𝕀[∥Π𝑈 (𝑥)∥22 ≥ 2𝑘]

]
+ 𝔼

[
ℎ(𝐹 (𝑥)) · (∥Π𝑈𝑥 ∥22 − 𝑘) · 𝕀[∥Π𝑈 (𝑥)∥22 < 2𝑘]

]
= 𝔼

[
ℎ(𝐹 (𝑥)) · (∥Π𝑈𝑥 ∥22 − 𝑘) · 𝕀[∥Π𝑈 (𝑥)∥22 ≥ 2𝑘]

]
≥ 𝔼

[
ℎ(𝐹 (𝑥)) · 𝑘 · 𝕀[∥Π𝑈 (𝑥)∥22 ≥ 2𝑘]

]
≥ 0.

This is likely positive. If we can prove ⟨𝑀ℎ,Π𝑈 ⟩ > 0, according to Corollary 1, the top eigenvector of𝑀ℎ would lie
in the relevant subspace 𝑈 .

Now we take ℎ(𝑧) = 𝕀[|𝑧 | ≥ 𝜏] where 𝜏 = Λ
√
2𝑘. Then we have ⟨𝑀ℎ,Π𝑈 ⟩ ≥ 𝑘 · 𝔼[ℎ(𝐹 (𝑥)) · 𝕀[∥Π𝑈 (𝑥)∥22 ≥

2𝑘]] = 𝑘 · 𝔼[𝕀[|𝑦 | ≥ 𝜏]] = 𝑘 · ℙ[|𝐹 (𝑥) | ≥ 𝜏]. We only need to prove ℙ[|𝐹 (𝑥) | ≥ 𝜏] > 0 to prove ⟨𝑀ℎ,Π𝑈 ⟩ > 0.
Moreover, we want to verify the 3 conditions. The first condition is satisfied trivially. The second condition is
closely related to lower bound ℙ[|𝐹 (𝑥) | ≥ 𝜏] and we will discuss later. We verify the third condition as below.

Lemma 3 (Condition 3). When ℎ(𝑧) = 𝕀[|𝑧 | ≥ 𝜏], we have ℎ(𝐹 (𝑥)) ≠ 0 if and only if ∥Π𝑈 (𝑥)∥22 ≥ 2𝑘.

Proof. If ∥Π𝑈 (𝑥)∥22 < 2𝑘, we have

|𝐹 (𝑥) | = |𝐹 (Π𝑈 (𝑥)) |
≤ |𝐹 (0) | + Λ ∥Π𝑈𝑥 ∥2 (Λ-lipschitzness of 𝐹)

< Λ
√
2𝑘,

so ℎ(𝐹 (𝑥)) = 0 and the lemma is proved. □

3

Finally, we focus on the second condition and prove that with high probability, 𝐹 (𝑥) | ≥ 𝜏 , which also implies
that ⟨𝑀ℎ,Π𝑈 ⟩ > 0. Formally, we have the following lemma.

Lemma 4 (Condition 2). Suppose 𝔼𝑥∼N (0,I) [𝐹 (𝑥)2] ≥ 𝜎2. Then we can prove that when ℎ(𝑧) = 𝕀[|𝑧 | ≥ 𝜏], we have

ℙ[|𝐹 (𝑥) | ≥ 𝑠] ≥ erfc

(√
2𝑘𝑠
𝜎

)
𝜎2

2𝑘
≥ Ω(exp(−3𝑘𝑠2/𝜎2)) 𝑠𝜎

√
𝑘Λ2

, (2)

for any 𝑠 > 0.

Proof. 𝐹 : ℝ𝑘 → ℝ is a continuous, piecewise-linear function which isΛ-Lipschitz and satisfies 𝔼𝑥∼N (0,I) [𝐹 (𝑥)2] ≥
𝜎2. Let 𝑆𝑖 ⊆ ℝ𝑘 be a linear piece (polyhedral cone) of 𝐹 . Suppose 𝐹 (𝑥) = ⟨𝑢𝑖 , 𝑥⟩ for ∀𝑥 ∈ 𝑆𝑖 . Without loss of
generality, we assume that ∥𝑢𝑖 ∥2 ≤ Λ (see lemma 4.5 in [CKM22]). We define 𝜎2

𝑖 ≜ 𝔼𝑥∼N (0,I) [⟨𝑢𝑖 , 𝑥⟩2 |𝑥 ∈ 𝑆𝑖].
Note that if we choose linear piece 𝑆𝑖 with probability ℙ[𝑥 ∈ 𝑆𝑖], then 𝔼[𝐹 (𝑥)2] = 𝔼𝑖 [𝜎2

𝑖] ≥ 𝜎2. Because 𝑆𝑖
is a polyhedral cone, similarly to the proof of Lemma 2, sampling 𝑥 from N (0, I) given 𝑥 ∈ 𝑆𝑖 is equivalent to
sampling 𝑟 from X 2

𝑘
and 𝑣 from S𝑘−1 given 𝑣 ∈ 𝑆𝑖 and then outputting

√
𝑟𝑣 . Hence, we have

𝜎2
𝑖 = 𝔼𝑟 ∈X 2

𝑘
,𝑣∈S𝑘−1 [𝑟 ⟨𝑢𝑖 , 𝑣⟩2 |𝑣 ∈ 𝑆𝑖]

= 𝔼𝑟 [𝑟] · 𝔼𝑣 [⟨𝑢𝑖 , 𝑣⟩2 |𝑣 ∈ 𝑆𝑖]
= 𝑘 · 𝔼𝑣 [⟨𝑢𝑖 , 𝑣⟩2 |𝑣 ∈ 𝑆𝑖],

so we have 𝔼𝑣 [⟨𝑢𝑖 , 𝑣⟩2 |𝑣 ∈ 𝑆𝑖] =
𝜎2
𝑖

𝑘
. Before we continue our proof, we prove a claim at first.

Claim 1. If a random variable 𝑍 satisfies that |𝑍 | ≤ 𝑀 almost surely and 𝔼[𝑍 2] ≥ 𝜎2, we have ℙ[|𝑍 | ≥ 𝑡] ≥
1
𝑀2 (𝜎2 − 𝑡2).

Proof. We can deduce that

𝜎2 ≤ 𝔼[𝑍 2]
= 𝔼[𝑍 2 | |𝑍 | ≥ 𝑡] · ℙ[|𝑍 | ≥ 𝑡] + 𝔼[𝑍 2 | |𝑍 | < 𝑡] · ℙ[|𝑍 | < 𝑡]
≤ 𝑀2 · ℙ[|𝑍 | ≥ 𝑡] + 𝑡2,

which indicates that ℙ[|𝑍 | ≥ 𝑡] ≥ 1
𝑀2 (𝜎2 − 𝑡2). □

According to the claim, we can further deduce that

ℙ[|⟨𝑢𝑖 , 𝑥⟩| ≥ 𝑠 |𝑣 ∈ 𝑆𝑖] ≥ ℙ

[
𝑟 ≥ 2𝑘𝑠2

𝜎2
𝑖

]
· ℙ

[
|⟨𝑢𝑖 , 𝑣⟩| ≥

𝜎𝑖√
2𝑘

����𝑣 ∈ 𝑆𝑖]
≥ ℙ

[
𝑟 ≥ 2𝑘𝑠2

𝜎2
𝑖

]
·
(
𝜎2
𝑖

𝑘
−
𝜎2
𝑖

2𝑘

)
≥ ℙ𝑔∈N (0,I) [𝑔 ≥

√
2𝑘𝑠/𝜎𝑖] ·

𝜎2
𝑖

2𝑘

= erfc

(√
2𝑘𝑠
𝜎𝑖

)
·
𝜎2
𝑖

2𝑘
.

4

We can verify that erfc
(√

2𝑘𝑠
𝜎𝑖

)
· 𝜎

2
𝑖

2𝑘 is a convex function with respect to 𝜎𝑖 . Hence, we have

ℙ[|𝐹 (𝑥) | ≥ 𝑠] = 𝔼𝑖 [ℙ[|⟨𝑢𝑖 , 𝑥⟩| ≥ 𝑠 |𝑣 ∈ 𝑆𝑖]]

≥ erfc

(√
2𝑘𝑠

𝔼[𝜎𝑖]

)
·
𝔼𝑖 [𝜎2

𝑖]
2𝑘

(Jensen’s inequality)

≥ erfc

(√
2𝑘𝑠

𝔼[𝜎2
𝑖
]1/2

)
· 𝜎

2

2𝑘

= erfc

(√
2𝑘𝑠
𝜎

)
𝜎2

2𝑘
.

The second inequality in this lemma is proved by standard bounds on erfc. □

Now we have proved that ℎ(𝑧) = 𝕀[|𝑧 | ≥ 𝜏] satisfies all three conditions and𝑀ℎ has kernel containing𝑈 ⊥ and
top eigenvalue no less than exp(−𝑂 (Λ2𝑘2/𝜎2)) (let 𝑠 = 𝜏 in Lemma 4). If we form an empirical estimate of 𝑀ℎ

from enough samples and take its top eigenvector, will be close to the relevant subspace 𝑈 . However, The full
spectrum of 𝑀ℎ need not reveal the full subspace 𝑈 . The next question is how to extend our method to learn the
rest of the relevant subspace.

2.2 Finding Another Relevant Vector
Given 𝑣 ∈ 𝑈 , we want to find another vector 𝑣 ′ ∈ 𝑈 \span(𝑣). We define a different matrix 𝑀 ′ as

𝑀 ′ ≜ Π⊥𝑣 · 𝔼[𝕀[|𝑦 − 𝐹 (Π𝑣𝑥) | ≥ 𝜏] · (𝑥𝑥⊤ − I)] · Π⊥𝑣 . (3)

Here we suppose we already know 𝐹 (Π𝑣𝑥). In fact, if 𝐹 is an MLP with size no more than 𝑆 over a known subspace
𝑉 , we can compute 𝐹 (Π𝑣𝑥) by constructing an 𝜀-net over possible networks (problem 1 in pset 4).

Similar to Lemma 1, we claim that ker(𝑀 ′) contains 𝑈 ⊥ ⊕ span(𝑣) as below.

Lemma 5. The kernel of 𝑀 ′, ker(𝑀 ′) contains subspace 𝑈 ⊥ ⊕ span(𝑣) of ℝ𝑑 .

Proof. For 𝑧 = 𝛼𝑣 + 𝛽𝑤 where 𝑤 ∈ 𝑈 ⊥ is unit form and 𝑣 ⊥ 𝑤 , we have

𝑧⊤𝑀 ′𝑧 = 𝛽2𝑤⊤ · 𝔼[𝕀[|𝑦 − 𝐹 (Π𝑣𝑥) | ≥ 𝜏] · (𝑥𝑥⊤ − I)] ·𝑤
= 𝛽2𝔼[𝕀[|𝑦 − 𝐹 (Π𝑣𝑥) | ≥ 𝜏] · (⟨𝑤, 𝑥⟩2 − 1)]
= 𝛽2𝔼[𝕀[|𝑦 − 𝐹 (Π𝑣𝑥) | ≥ 𝜏]]𝔼[⟨𝑤, 𝑥⟩2 − 1]
= 0.

Here, the second last equality is because 𝕀[|𝑦 − 𝐹 (Π𝑣𝑥) | ≥ 𝜏] depends on 𝑈 ⊕ 𝑣 and ⟨𝑤, 𝑥⟩2 − 1 depends on 𝑤 ,
which is orthogonal to 𝑈 ⊕ 𝑣 . □

Similar to Corollary 1, we can also prove a corollary using this lemma.

Corollary 2. If 𝑀 ′ ≠ 0, then the top singular vector of 𝑀 ′ lies in 𝑈 \span(𝑣).

Proof. The top singular vector of 𝑀 ′ should be orthogonal to ker(𝑀 ′) when 𝑀 ′ ≠ 0. Since (𝑈 ⊥ ⊕ span(𝑣)) ⊆
ker(𝑀 ′), we know that the top singular vector of 𝑀 ′ should be orthogonal to 𝑈 ⊥ ⊕ span(𝑣) so in 𝑈 \span(𝑣). □

Similar to before, we will prove 𝑀 ′ ≠ 0 by lower bounding ⟨𝑀 ′,Π𝑈 \span(𝑣)⟩. In detial, we have

⟨𝑀 ′,Π𝑈 \span(𝑣)⟩ = 𝔼[𝕀[|𝑦 − 𝐹 (Π𝑣𝑥) | ≥ 𝜏] · (

Π𝑈 \span(𝑣) (𝑥)

2
2 − (𝑘 − 1))],

and similar to Section 2.1, we need to check the two claims:

1. ℙ[|𝑦 − 𝐹 (Π𝑣 (𝑥)) | ≥ 𝜏] is large (corresponding to condition 2 in Section 2.1 proved by Lemma 4).

5

2. |𝑦 − 𝐹 (Π𝑣 (𝑥)) | ≥ 𝜏 for 𝑥 ⊥ 𝑣 if and only if

Π𝑈 \span(𝑣) (𝑥)

2
2 ≥ 2𝑘 − 2 (corresponding to condition 3 in

Section 2.1 proved by Lemma 3).

Then we can deduce that ⟨𝑀,Π𝑈 \span(𝑣)⟩ ≥ (𝑘 − 1) · ℙ[|𝑦 − 𝐹 (Π𝑣 (𝑥)) | ≥ 𝜏] > 0, which indicates that the top
eigenvector of 𝑀 ′ lies in 𝑈 \span(𝑣).

We still use ℎ(𝑧) = 𝕀[|𝑧 | ≥ 𝜏] but change 𝜏 from Λ
√
2𝑘 to Λ

√
2𝑘 − 2. We prove condition 2 at first.

Lemma 6 (Condition 2). When ℎ(𝑧) = 𝕀[|𝑧 | ≥ 𝜏], we have ℎ(𝐹 (𝑥)) ≠ 0 if and only if ∥Π𝑈 (𝑥)∥22 ≥ 2𝑘.

Proof. Take any 𝑥 ⊥ 𝑣 . If

Π𝑈 \span(𝑣) (𝑥)

2
2 < 2𝑘 − 2, then |𝐹 (𝑥) − 𝐹 (Π𝑣 (𝑥)) | < Λ

√
2𝑘 − 2:

|𝐹 (𝑥) − 𝐹 (Π𝑣 (𝑥)) | = |𝐹 (Π𝑈 (𝑥)) − 𝐹 (Π𝑣 (𝑥)) |
≤ Λ

Π𝑈 \span(𝑣) (𝑥)

2

≤ Λ
√
2𝑘 − 2,

so condition holds for 𝜏 = Λ
√
2𝑘 − 2. □

Then we prove condition 1, ℙ[|𝑦 − 𝐹 (Π𝑣 (𝑥)) | ≥ 𝜏] is large. On one hand, if 𝔼[(𝑦 − 𝐹 (Π𝑣 (𝑥)))2] is large,
because 𝐹 (𝑥) − 𝐹 (Π𝑣 (𝑥)) is piecewise-linear, we can apply anti-concentration argument from earlier (you can
prove it similarly to Lemma 4 if you are interested). On the other hand, if 𝔼[(𝑦 − 𝐹 (Π𝑣 (𝑥)))2] is small, 𝐹 (Π𝑣 (𝑥))
already achieves low test loss, so we are done! Formally, we have the following more general lemma, which is
similar to Lemma 4. suppose we have found orthogonal vectors 𝑣1, · · · , 𝑣𝑚 ∈ 𝑈 so far. Let 𝑉 denote their span,
then we have the following lemma to show that we can find the next 𝑣𝑚+1 ∈ 𝑈 \𝑉 if𝑚 < 𝑘.

Lemma 7 (A More General Condition 1, Lemma 5.5 in [CKM22]). If 𝔼[(𝑦 − 𝐹 (Π𝑣 (𝑥)))2] ≥ 𝜎2 and 𝜏 =

Λ
√︁
2(𝑘 −𝑚), then

𝑀 ′ ≜ Π𝑉 ⊥ · 𝔼[𝕀[|𝑦 − 𝐹 (Π𝑉 (𝑥)) | ≥ 𝜏] · 𝑆2(𝑥)] · Π𝑉 ⊥

has kernel containing 𝑈 ⊥ ⊕ 𝑉 and top eigenvalue no less than exp(−𝑂 (Λ2𝑘2/𝜎2)).

When𝑚 = 1, the lemma is condition 1 so we can find another relevant vector in𝑈 \span(𝑣). Furthermore, this
lemma indicates that if we form an empirical estimate of 𝑀 ′ for each𝑚 from enough samples and take its top
eigenvector, we recover a new direction in 𝑈 , so we can find all 𝑣1, 𝑣2, · · · , 𝑣𝑘 such that 𝑈 can be fully recovered.
The proof and more strict description of this lemma can be found in [CKM22].

2.3 The Algorithm
In Section 2.1 and Section 2.2, we have already provided a method to recover relevant space 𝑈 . In this section,
we write the whole algorithm Filtered PCA more clearly in an algorithm environment (Algorithm 1).

3 Robustness of Filtered PCA
Let us look back 𝐹 (Π𝑉 (𝑥)). In all analysis in Section 2.1 and Section 2.2, we assume that 𝐹 (Π𝑉 (𝑥)) is known.
However,we actually do not have access to the function. In Section 2.2,we suggest using 𝜀-net to estimate 𝐹 (Π𝑉 (𝑥)).
In this section, we discuss the robustness of Filtered PCA over the uncertainty of the estimation 𝐹 (Π𝑉 (𝑥)) of
𝐹 (Π𝑉 (𝑥)). To understand how robust our approach is to this, need to understand stability of thresholds of MLPs.
We have the following lemma for this.

Lemma 8 (Lemma 2.2 in [CKM22]). For depth-𝐿 MLPs 𝐹 and 𝐹 ′ with the same architecture and whose weight
matrices are 𝛼-close in operator norm, ℙ[|𝐹 (𝑥) | > 𝜏, |𝐹 ′ (𝑥) | ≤ 𝜏] ≤ 2𝑂 (𝑆)𝐵𝛼/𝜏 where 𝛼 is the granularity of the
epsilon-net.

6

Algorithm 1: Filtered PCA
Input: Sufficiently many data points 𝑥 ∼ N (0, I) and 𝐹 (𝑥)
Output: Set L of 𝑘 orthogonal vectors in relevant space 𝑈

1 L← ∅
2 for 0 ≤ 𝑚 < 𝑘 do
3 𝑉 ← span(vectors in L)
4 for 𝐹 ∈ 𝜀-net(size≤ 𝑆 networks over 𝑉) do
5 If 𝐹 achieves low square loss, return 𝐹 .
6 Else, compute top eigenvector 𝑣𝑚+1 of 𝑀 ≜ Π𝑉 ⊥ · 𝔼[𝕀[|𝑦 − 𝐹 (Π𝑉 (𝑥)) | ≥ 𝜏] · 𝑆2(𝑥)] · Π𝑉 ⊥ .
7 If spectral norm of 𝑀 sufficiently large, continue to 2c.
8 end
9 L← L ∪ {𝑣𝑚+1}

10 end
11 Return L

Proof. Here we only give a proof sketch. Firstly, we know that any continuous piecewise-linear function 𝐹 can be
written as a depth-2 max-min formula [Ovc00]. We consider max-min formulas Φ,Φ′ for 𝐹, 𝐹 ′. Then if MLPs 𝐹, 𝐹 ′
have same architecture, Φ,Φ′ have same clause structure. We consider a sequence of “hybrids” between Φ,Φ′

changing Φ from Φ = Φ(0), Φ(1) , . . ., to Φ(𝑁) = Φ′ little by little. Between consecutive hybrids Φ(𝑖−1) and Φ(𝑖) ,
the probability that their thresholds disagree is at most ℙ[𝕀[⟨𝑢𝑖 , 𝑥⟩ > 𝜏], 𝕀[⟨𝑤𝑖 , 𝑥⟩ ≤ 𝜏]] where ⟨𝑤𝑖 , 𝑥⟩’s belong to
Φ and ⟨𝑢𝑖 , 𝑥⟩’s belong to Φ′. □

This lemma indicates that when 𝛼 is very small, the difference between 𝐹 and 𝐹 ′ with respect to 𝜏 will be
bounded by 2𝑂 (𝑆)𝐵𝛼/𝜏 . Thus𝑀 we used in Algorithm 1 should be very close to𝑀 ′ we use in analysis in Section 2.2.
Intuitively, the subspace distance between span(𝑣1, · · · , 𝑣𝑘) output by Filtered PCA and 𝑈 should be also very
small. One who is interested can refer to [CKM22] for more formal claims.

Moreover, we want to emphasis that the linear dependence on 𝛼 is crucial. If we instead had a bound scaling
with 𝛼0.99, then if we iterate this dim(𝑈) = 𝑘 times, would yield sample complexity doubly exponential in 𝑘.

4 Takeaways
Known that CSQ algorithms (based only on statistics of the form 𝔼[𝑦 ·𝑔(𝑥)]) fail even to learn general one-hidden-
layer MLPs over Gaussian inputs.

We circumvented this by using non-CSQ statistics of the form 𝔼[ℎ(𝑦 − 𝑓 (𝑥)) · 𝑔(𝑥)], giving a poly(𝑑) ·
exp(poly(problem parameters)/𝜀)-time algorithm for learning general MLPs over Gaussian inputs.

References
[CKM22] Sitan Chen, Adam R. Klivans, and Raghu Meka. Learning deep relu networks is fixed-parameter

tractable. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
696–707, 2022.

[Ovc00] Sergei Ovchinnikov. Max-min representation of piecewise linear functions. arXiv preprint math/0009026,
2000.

7

	Warm-Up
	Attempt 1
	Attempt 2

	Filtered PCA
	A Different Filter Function
	Finding Another Relevant Vector
	The Algorithm

	Robustness of Filtered PCA
	Takeaways

