l1/4 Lecture 17: Intro to Graphical Models, VI Def: (Undirected) graphical mudel w/ pairwise interactions: Let $\{U_{ij}\}_{(i,j)}$ of the compatibility functions $\{t1\}^2 \rightarrow \mathbb{R}_{\geq 0}$
That dictorte interactions left particles The Gibbs measure is dist. avec {+1}⁰ given by $M(x) \triangleq \frac{1}{\sum \prod_{(i,j)\in F} \psi_{ij}(x_i, x_j)}$, $Z \triangleq \sum_{x \in \{i | S^n(i,j)\}} \psi_{ij}(x_i, x_j)$
 $W(x) \triangleq \frac{1}{\sum \prod_{(i,j)\in F} \psi_{ij}(x_i, x_j)}$, $Z \triangleq \sum_{x \in \{i | S^n(i,j)\}} \psi_{ij}(x_i, x_j)$ Carffort. We will use the shorthand $M \propto \prod_{i,j} \psi_{ij}(x_i, x_j)$ Example ("Ising model"):
Example ("Ising model"):
 $\psi_{ij}(x_i,x_j) = e_{\mathsf{x} \rho}(-\beta \int_{ij}^{ij} x_i x_j)$, so $M(x)$ a symmetric matrix with zero diagonal B: "inverse temperature" A: "Hamiltonian"/"interaction natrix" $\int_{Z}^{3} x^{T}Ax = -I_{9}(\prod_{(i,j)\in F} \Psi_{ij}(x_{i},x_{j})) \cdot \int_{C}^{a}e^{i\alpha y}y''$ $E(x) \equiv$

As $\beta \rightarrow 0$, $\mu \rightarrow \text{Unif}(\{\pm 1\}^n)$ B 3 p , $M \rightarrow U_{n}$ ({ energy minimizers }) Can think of A as adjacency matrix of weighted graph& Denote this by G. $\{j : \triangleq \{j \text{ s.t. } A_{ij} + 0\} = \{j \text{ s.t. } (i,j) \in F\},\}$ Markov property: i.e. the reighbors of rode i in G
larton property: If $[n] \setminus S$ decomposes into disjoint pieces, then marginal distributions on the pieces are independent, conditioned on any assignment to the spins on 5 e.g. if we condition on $x_{d,i}$, then conditional dist. on ×; is independent of conditional list on rest of the spins. For Ising model: $P_r[x_i = \sigma | x_{\delta} = s]$ or exp($\beta \sum_{j \in \delta} A_{ij} s_j \sigma$) * negative sign is bk. of inconvenient culture clash blt physics and CS: physicists want to minimize energy, in CS we want to Maximize x⁷Bx, e.g. in MAXCUT

2 fundamental algorithmic tasks in inference: ① computing the partition function 2- ⑦ Sampling from Gibbs measure µ Note alg. for ^① ⇒ alg . for ^② and vice versa (" equivalence of counting ⁺ sampling ") Challenge : Z is sum of exponentially many terms , so in many Cases we expect it is computationally hard to compute . . . $e.g.$ if $\psi_{ij}(x_i,x_j) = 1\int x_i + x_j \int$ for all $(i,j) \in E(6)$, $Z = #$ independent sets of G ("#p-complete", i.e. very hard) So our goal will be to approximate Z/approximately sample from Gibbs measure M This Some approaches : init - Markou Chain Monte Carlo (MCMC) - Variational inference (VE) - Diffusion models (very recent, more on this at the end of the Course)

Fortunately, this particular issue is not really an issue: $KL(D\|w) = \bigoplus_{\nu} ln \frac{w}{\mu}$ $= 4.3 - 4.7$ free energy of $G[\nu]=H(\nu)+E[\epsilon]$ the Gibbs measure = $f(h\nu + fE) - h(Vz)$ regative average of v!

entropy energy to independent

entropy energy to independent "Gibbs free energy function al "/ -1 x evidence lower
6 bourd" (ELBO) easy to evaluate (note: Convex in U) 50 to minimize KL(UllM), suffices to minimize G[U] which is easy to evaluate Interpretation of G as "regularized energy":
for Ising model, recall $E(X) = \frac{\beta}{2} \times 7Ax$, so $G[\nu] = \frac{\beta}{2}x^{\tau}Ax - H(\nu)$ "entropy"

" hot" when B small , minimizer prioritizes maximizing entropy P big . minimizer prioritizes minimizing avg. regy, without providing winning and example ^G [u) efficiently computable, but computationally infactable to optimize a priori... Next lecture: powerful heuristic, belief
propagation (BP) for solving min G[v]. 2 interpretations of the heuristic: ① dynamic programming ② finding stationary points of a relaxation g- the Gibbs free energy (Bethe free energy 2 interpretations of the heuristic:

1 dynamic programming

1 finding stationary points of a relaxation

1 of the Gibs free energy (Bethe free energy)

(See Supplemental notes)

(BP os dynamic programming (see stiles for L BP as dynamic programming (see slides for Lecture 18) Let's first shift focus to easier task than full-blown VI : marginal estimation dist. M; over each node is a Bernaulli random variable, good is to estimate it physicists Care about limiting objects, and one important that they consider as n>x is the empirical dist. Over marginals, i.e.

 $\frac{9}{10}(z) = \frac{1}{10} \sum_{i=1}^{10} 11[z = \mu_i]$ and, given a sequence of Gibbs menures To notivate the algorithm, assume G is a tree Note: Visi renaring (i,j) from tree
Visi Splits G into two subtrees $\frac{1}{2}$: $\sqrt{1.75}$ ($\sqrt{1.71}$ + edge (ii)) $\overline{V}_{j\rightarrow j}$ ($V_{i\rightarrow j}$ + egg (i,j) lo sample from M., 1). Sample spins on subtrees V_{j} si for jedi.
Yields assignment se(±1)^{di} to di 2). Sample from conditioned dist. On X; , i.e. $P_{c}[x_{i} = \sigma | x_{\delta_{i}} = s]$ or $\iint_{i} \psi_{ij}(\sigma, s_{i})$

By law of total probability , 44 $\sqrt{P_r[x_i = \sigma] \propto \sum_{S \in \{1\} \setminus S : J \in \mathcal{J}_i \}} P_r[x_j = s_j] \psi_{ij}(\sigma, s_j)$
= $\frac{1}{\sqrt{N}} \sum_{S \in \{1\} \setminus S : J \in \mathcal{J}_i \}} P_r[x_i = s_j] \psi_{ij}(\sigma, s_j)$ $SE\{f|S_9: j \in G_9\}$ = $T_1 \sum_{i \in I} P_i \left[x_i \right]$ - $\left(\mathcal{G}_{ij}\right)\mathcal{H}_{ij}(\sigma,\mathsf{s}_{ij})$ 7 jeg; 5.6 marginal \sqrt{d} $\{ \pm i \}$ P_{1} $\begin{pmatrix} x_{1} & 5 \ y_{2} & 5 \end{pmatrix}$ $\begin{pmatrix} \psi_{1}(0,5) \\ \psi_{2} & \psi_{1} \end{pmatrix}$ $\frac{d}{dx}$ d^r V_{j→}; spins are independent acan j , bodility,

bodility,
 $\frac{1}{6}$ $\frac{1}{16}$ $\$ $p\text{ copotional }$ to $p\text{ f}(x_i = \sigma)$ $'$ \vee \rightarrow i (i.e. Can express naginals of Visi in tems of marginals of Mussi Unsatisfying b/c we've gone from $P_{r}(x;=\sigma)$ to $P_{r}(x;=\sigma)$, but μ M \bar{V} we 're very close .

Define <u>messages</u>: $m\bigodot s_i \leq P_c(x_i=\sigma)$ $M_{j\rightarrow i}$ $m_{\tau}^{j*0} \triangleq Pr(X;=\sigma)$ $M_{\overline{V}_{3} \rightarrow i}$ Then (\$80) can be written as $\overline{\widetilde{\mathcal{M}}}$ $rac{1}{3}$

Can be writh
 0

oc $\sum_{s \in \{\pm l\}} m$ → $\frac{1}{\sqrt{2}}$ $SE\{t\}$ Also note that (600) can be modified to apply to $\mu_{V;sk}$, instead of $\mu,$ i.e. -1¥ $\frac{1}{\sqrt{2\pi}}$

previanty, (604) gave $Pr[X_i = \sigma]$ or $\prod_{i=1}^{n} m_i$ or jedi after removing edge (iit) , we get $Q \rightarrow k$ or $\prod_{\alpha} \pi_{\alpha}^{j\rightarrow 0}$ $Q = \begin{pmatrix} P_f(x, z\sigma) & C & |f \circ \overline{a} \\ f & f & \overline{a} \\ f & f & \overline{a} \end{pmatrix}$
 $= \begin{pmatrix} Q & R & Q \\ R & Q & \overline{a} \\ \overline{a} & \overline{a} \end{pmatrix}$
 $= \begin{pmatrix} P_f(x, z\sigma) & C & |f \circ \overline{a} \\ f & f & \overline{a} \\ f & \overline{a} \end{pmatrix}$
 $= \begin{pmatrix} R & R & Q \\ R & \overline{a} \end{pmatrix}$ M_{ij} J we can then write marginals succinctly in terms of the messages : θ $a^{2}m^{3}$ $b^{3}m=5m^{2}m^{3}m^{3}$.
F Combining \bigoplus and \bigoplus yields: \bigcirc \rightarrow i (re_{c}) $M_{\sigma}^{\bigoplus k}$ of $M_{\text{refl}}^{\bigoplus k}$ $\sum_{i\in\mathcal{J}_{i}}M_{s}^{\bigoplus j}$ $\psi_i(\sigma s)$ jedilk SEH)

BP on trees : 1) . Pick arbitrary root vertex 2). For every lent j and parent i, $infinite$ $m_{\tilde{a}}^{j\rightarrow i}$ = 1/2 \forall $\sigma \in \{\pm 1\}$ 3). Use (rec) to compute m_ 's via dynamic programming , starting from leaves 4) Use 1 to compute m's 5) Vse (6060) to compute magginals what if G is not a tree ? Then Subtree maginals { M jisi } jed ; are not independent... Nevertheless , can still run the above algorithm and hope it gives something interesting

As stated. the desorthm is stated w/ a tree Structure in mind. Without this, we can still apply update rules for ñ and m in parallel

are houd Lange Intuition for why this is a good idea: if the graph is a random sparse graph, then locally it looks like a tree ÷¥¥÷j AN i. If every edge appears $u \cdot \rho$. \leq for $c = O(1)$, then probability that some " descendant " at depth d " returns" to ancestor i is to ancestar i
|- (1 - 1) cd s_0 as long as $c_d < c \vee$, this is $o(1)$. Next lecture we will see a natural setting where such a sparse random graph arises.

Even in such case, BP is notoriously hard to analyze. We will instead see 2 rigorous dog's inspired by BP : 1) . Spectral methods on nonbacktrckig operators 2). approximate message passing .