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lecturel7.IN/---GraphiaModels.VIDe-f:(Undirected graphical model w/ pairwise interactions :

Let {4ij}i,j , c. f be compatibility functions {£1 }↳R,,
that dictate interactionsbltpartides-heGibbsmeasure-isd.tt. over { £13

"

given by

MG)°=¥fep4ij(✗ i.%-) , ZEE 1T¥. Fix;)
" spins " ✗c- {-1-1}^4'ij )

where 2- is the partitionfurction , i.e. normalizing
constant .

We will use the shorthand

ME ¥1,4; (✗ i.✗j)
EXampleEIsinsmc.de#
- Vij (✗ iixj)= expfp Aij ✗is) , so

MH a expc-EE.EE !
energy

for AEIR
""

a symmetric matrix with zero diagonal

p :
"

inverse temperature
"

A :
"

Hamiltonian
"/ " interactionmatrix

"

EOE Pz ✗
+

Ax = -1g ( ftp.pY.j.fi#s)) :
"

energy
"



As p → 0 , µ→Unif( {£15)
PS

,
µ → Unit / { energy minimizes})

can think of
-A as adjacency matrix of weighted

graph& Denote this by G.

Ji & {j s -t. Aij -1-0 } = { js-t.ci,j)eF} ,

i.e.theneighborsofnodei.in#Markovproperty-:

0A
If G) IS decomposes into disjoint pieces ,

then marginal distributions on the pieces
are independent , conditioned on any assignment
to the spins on s

e.g . if we condition on xg ; ,
then conditioned

dist. on × ;
is independent of conditional list on

rest of the spins . For Ising model:

Prfxio / ✗oi=s)aexp( BE Aijsjo)jedi

* negative sign is bk
. of inconvenient culture clash blt physics

and CS : physicists want to minimize energy , in CS
we want to maximize ✗Tpx , e.g. in MAXCUT



2 fundamental algorithmic tasks in inference :

① computing the partition function 2-

⑦ Sampling from Gibbs measure µ
Note alg . for ① ⇒ alg . for ② and vice versa

( " equivalence of counting + sampling
"

)

Challenge : Z is sum of exponentially many terms , so
i cases we expect it is computationally hard to
compute . . .

e.g. if 4;j(✗ i.xj) = # [ ✗ i # ✗j] for all Ciij)EE(6),
2- = # independent sets of G C" #P - complete

"

,

i.e. very hard)

so our goal will be to approximate £ /approximately
sample from Gibbs measure M

This Some approaches :
unit - Markov chain Monte Carlo (MCMC)
t

- Variational inference (VE)
- Diffusion models ( very recent

,
more on this at the

end of the course)



VI : approximate µ by dirt from family p

of " simpler
" distributions that are easy

to sample from (e.g. product distributions,
aka naive mean- field ) :

min KLCU Hr ) ca
uep

Note : - if P is distributions , minimizer is V•=M
(Gibbs ' inequality )
-

"

opposite
"

of Sos relaxation

iiisdaisltributions?⃝¥i÷
An issue : can't even evaluate the objective function

in (a) , let alone optimize !



Fortunately , this particular issue is

not really an issue :

KL(HIM = § In ±µ

free energy of

°ÑÉ+
" € " ¥£ " "" """"

u
-

= ④ Inu + f-E- 1^41=4"

Gibbs free energy w

w

average
independent

functional
"

/ negative of u !
entropy energy

-1 ✗

"

evidence lower - Hcv ) Ñ-o

¥Ésimp6 ,
approximate

bound" (ELBO)
easy to evaluate( note : convex in U)

so to minimize KL / UNM) , suffices to minimize

Gfu] which is easy to evaluate

Interpretation of Gas
"

regularized energy
"

:

for Ising model , recall EGYPT Ax
,

so

GG)= P-zxtn-x-HH.EE
regularization

"



" hot "

when B small , minimizer prioritizes maximizing entropy
P big . minimizer prioritizes minimizing avg . energy
" cold

"

G [u) efficiently computable, but computationally
intractable to optimize a priori . . .

Next lecture : powerful heuristic.be/iefpropagution-CBD
,
for solving min Glu) .

2 interpretations of the heuristic:

① dynamic programming

② finding stationary points of a relaxation

g- the Gibbs free energy ( Bethe free energy)
ÉPÉE

Bpasdynamicpogamming ( see slides for lecture 18)
Let's first shift focus to easier task than full-blown
VI : maginaletimation-dist.pe ; over each node

is a Bernoulli random variable , good is to estimate it

Ppñy%tFÉ+ÉÉout limiting objects , and one
important that they consider as n→x is the

empirical dist . over marginals , i -e .



9.G) e- £É
,
#F- Mi]

and
, given a sequence of Gibbs measures

(pic))
,

want to understand Lingo %
To motivate the algorithm ,

assume G is a free

Note : / Vj→i removing (i ,j) from tree

✓⇒j g-
splits G into two subtrees

-

Iof☒ : Vi→j ( Vj→i + edge (in) )

*pj_ : Ñj→i ( Vi→j + edge (i.ji)

To sample from Mi i

1)
. Sample spins on subtrees Vj→i for jedi ,
yields assignment se {tipi to di

2) . Sample from conditional disk on ✗ i , i. e.

117/4=01×2 ;-_ 5)a¥ ;
Vij (9s;)



By law of total probability ,

(• * µPr[
✗EASE IT Prf 8) 4,19s;)

E- {*Bdi jedi

= TIE Pr [ Xj -- g) ¥9s;)
7 jej, 5-c-{*BMVj#b/c

marginal
dish's Vj→i
spins
are independent
ago, j ,](boo )

proportional to Prfx ; -- o]
MFj→i

( i.e. Can express marginals of Mjg,; in
terms of margins of Mugs;)

Unsatisfying b/c we've gone from

Prfxi=D to Pr Gio]
,
but

n MJj→ :
we 're very close .



Define
messages-imj-sio.IR ( g.=D

MVj→i

m-
① § Pr [ ✗ i=o]

ME
,→i

Then (8*8) can be written as

in
①
• [ m

→i. Y.j.GS)②
SEE-213

Also note that (6*0) can be modified to

apply to µµ→ ,,
instead of µ ,

i.e.

-1¥
X



previously , (boo) gave

prfxi.de/Tm-oi-i0
jedi

after removing edge (iit) , we get

①→ k ✗ IT ñj→①④ Mo jc-d.lk(ftp.ei-d)Api-Sk

J we can then write marginals succinctly
in terms of the messages :

(• •• a) pµrf*;=o]= moi -5mi
-si
o

combining ② and ④ yields :

①→ i

free ) m at Ems . ¥19s)
jedilk SEH)



BP on trees :

1) . Pick arbitrary root vertex

2)
.

For every leaf j and parent i ,
initialize mj→i = 1) z Y OE {-213

3)
.

Use ( ree ) to compute

m_ 's via dynamic programming ,

starting from leaves

4)
.

Use to compute m 's

5) Use (8*60) to compute marginals

what if G is not a tree ? Then

subtree marginals { Mui-si } jeg ;
are not independent . . .

Nevertheless
,
can still run the above

algorithm
•
and hope it gives something interesting

.to#-ed-hedgor-hmissta-edwa-ee
structure in mind

.

without this , we can still

apply update rules for ñ and m in parallel



oNmwYromf

Intuition for why this is a good idea :

if the graph is a random
sparse graph ,

then lock it looks like a tree

÷¥¥÷j
AN

i.
If every edge appears up. f- for c- 041

,

then probability that some
"

descendant " at depth d
"

returns
" to ancestor i is

1- ( 1- t)
"

so as long as cdccn
,
this is o( 1)

.

Next lecture we will see a natural setting where
such a sparse random graph arises .



Even in suitcases
, BP is notoriously hard

to analyze
.

We will instead see 2

rigorous dog's inspired by BP :

1)
. Spectral methods on

nonbacktrckig operators

2)
. approximate message passing .


