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in fact we 'll prove a generic result that doesn't even

need the assumption that the student network
is a one - hidden-layer MLP.

Consider a dataset (X , ,y ,) , . . . . On,Yn) c- 112%113

and a student network fg: IRD → IR , G- c- IRP
,

initialized to some O_O

We 'll use shorthand f - y to denote

( fofx ,) - Yi , . . . .
.
fear)- Yn )

.

Define : scalingparan: 8>0

empirical :[ ( g ) :{11gal -711:
Io E [ (8fq)

gradientflow-i.dk
,
? -Pe[(8# dt

= - jJFPI(8¥
,
/ dt

,

where

Jacobian : I
,
:
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will compare to linearized network / dynamics :

f G) = fqG) + Jo
- (0--0-0)

d -0+1 - Po. Ikf "É ) Jacobian

= -8pi(yf¥T
does not

change for
linearized

willassune-hn.tk

1) . Jg is Lipschitz in G
,
i. e.

11 Jo. - Jo.Hope pH -0-0-11 ,
2) Jo = Joy is full rank ( bounds will depend

on Fin / Trax of Jo)
-

Linearized dynamics very easy to analyze :

Lemmon .1 : If Qlt) 's ✗ ' Idn t -1
,
then for (9+1

-

given by

dge = - Q(t)PL^(9+1 dt ,
we have

[ ( g+) : Ilgo) - eapf 2×+1 .



PI : ¥, 1^(9-1)=(-04-111%+0) -D , 9+1×1 - Y)
f- 1,119+1×1-711?

= -2,1-1^(9-1)
.

So integrating this ( i.e . using Grinnell
's. inequality)

completes the proof . ☐

Can apply this to Qft = JOJI and g+=8f¥f
.

Then b/c

dÉ+ = - 8JIDÉ(8f"¥
,)dt ,

by chair rule
,

¥ (8f¥;) =

VK.IE/o...o.;d&--is.=-j2JoJi0o-iC8f'
¥+1

¥+570m?nlJo)Id
,

so by lemma
,
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So (unsurprisingly )
, training loss for linearized

network drops exponentially quickly .

Can also show that , relative to drop in loss
,

movement of parameters is negligible :

Lem2: Suppose process (-0^-1) satisfies

dÉ+= - SHIP i(go;)
for some network g , and I. IdtS(+151b£ I. Id H -1 . Then

118+-0%11 c- II 119%1×1-911
PI : 118+-0-111=114+1-565'PiG§D

c- Ill scallop - HPi(go.gl/lds
☐ YE w

1- 9gal
-y

EFF . / II go:o) - y /Ids
o-

c- exp C- is) . Ago:o)-111
s
( by preu . lemma) .

d- TI - Uggla - y / I - fexpf.is) ds
one
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Applying this to d-
+
= É+

, g ¥
"

SfD=8Jo
,

⇒ 118+-411 c- rÉ¥,.Hfo§- N

e RÉÑ⇒
4m¥

-

← ÷i¥ .ro.

Remains to show can apply lemmas I -12

to (0--1)
.

Complication is that J+ is changing

over time
.

We will show it does not change that

much
, provided 8 sufficiently large and Q,

remains close to initialization .

Lennox : Tf 110--0-0111 %"z EB , then
FnEdIdf Je f 3%÷Id

PI :



III. Hope Holly -111 Jo. -Jollop
c. an×Ad+P¥÷¥¥;om×E
c- 3{Jo)

.

for lower bound , for my Hulk 1
,

III. v11 >_PJo v11 - Mio. -Jo)vH

I 11J. v11 - PII -0-0-011 I %

So we can safely apply Lemma 1+2 to get

[ ( tfa ) Eexpf# ii.CJDT )

110--1-0-0111 - ri lo

as long as 11%-0-011 E B H seat] .

note that bound in (b) < < B as long as

✗ → ⇐:÷rio .



We conclude

Tina : Linearized network f¥
,

and

true network fee stay JI÷Ñ- close
for all -1>-0

,
and training loss for fay

drops exponentially quickly .

N

Eixample ; Consider = a
,

- occur i.xD
.

For
f- 1

Simplicity , suppose ai 's are random {-1-1} 's that

are not subsequently trained ,
so -0 = {Wi}iÉ , .

④ Jo. =/
F- {ai Kui ,

i
'

:

✗E. { aiokwi.si)}i

so HJo. -Jo. - Hip
E [ 11 ✗ ill:-( 0'Kw;,xD -048 , xD)

'
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so can take p://XHF-in.de/e.g.ifxn$d-!rd)

④ i Can initialize in such a way that

fqfx) is dominated by Y .
So

do = 1411' = n

Fnin(Jo),%a× : entries of Jo are OH
,

So because Nd>sn
, singular values are of order

rni

Putting everything together . 8 >>P§÷¥§Ñ
yields

y→¥. .F
= n

,

so provided we are in this regime , gradient flow
well -approx 'd by linearized dynamics

.


