COMPSCI 2243: Algorithms for Data Science, Fall 2024 (Sitan Chen) Version: 1.0

Submitted by \langle name \rangle

This problem set will cover concepts from the units on computational complexity and statistical physics.

1 (60 pts.) SQ DIMENSION BOUNDS FOR GENERALIZED LINEAR MODELS (10/23)

Motivation: In this exercise you will try your hand at proving a CSQ lower bound for a supervised learning problem. This will involve integrating what you learned about statistical query dimension with tools from Hermite analysis that were touched upon in the unit on supervised learning.

Setup: For every $\ell \in \mathbb{Z}_{\geq 0}$, let ϕ_{ℓ} denote the normalized degree- ℓ Hermite polynomial given by

$$
\phi_{\ell}(x) = \frac{1}{\sqrt{\ell!}} \text{He}_{\ell}(x) ,
$$

where He_ℓ is the l -th probabilist's Hermite polynomial. As discussed in class, these form an orthonormal basis for the space of functions which are L_2 integrable with respect to the standard Gaussian measure.

Let $\sigma:\R\to\R$ denote an activation function with Hermite expansion $\sigma(x)=\sum_{\ell=0}^\infty c_\ell\phi_\ell(x)$. Suppose σ satisfies the normalization condition

$$
\mathbb{E}_{g \sim \mathcal{N}(0,I)}[\sigma(g)^2] = 1.
$$

Suppose we are given samples $\{(x_i,y_i)\}_{i=1}^N$ where $x_i\sim\mathcal{N}(0,I)$ and $y_i=\sigma(\langle w,x_i\rangle)$ for some unknown $w\in\mathbb{S}^{d-1}.$ In this exercise, we will establish a CSQ lower bounds for this problem.

1.A. (25 PTS.) Given vectors $u, v \in \mathbb{S}^{d-1}$, prove the identity

$$
\mathbb{E}_{x \sim \mathcal{N}(0,I)}[\phi_{\ell}(\langle u, x \rangle) \cdot \phi_{\ell'}(\langle v, x \rangle)] = \mathbb{I}[\ell = \ell'] \cdot \langle u, v \rangle^{\ell}.
$$

You may use the fact that for $g\sim\mathcal{N}(0,1)$, $\mathbb{E}[e^{tg}]=e^{t^2/2}$ for all $t\in\mathbb{R}$, and that the probabilist's Hermite polynomials He_ℓ are given by the generating function

$$
e^{tg-t^2/2} = \sum_{\ell=0}^{\infty} \frac{1}{\ell!} \text{He}_{\ell}(g) t^{\ell}.
$$

- **1.B.** (15 PTS.) Let ℓ^* denote the *information exponent* of σ , that is, the smallest $\ell \in \mathbb{Z}_{\geqslant 0}$ for which $c_{\ell} \neq 0$. Use the above to prove that $\mathbb{E}[\sigma(\langle u, x \rangle) \sigma(\langle v, x \rangle)] \leqslant \langle u, v \rangle^{\ell^*}.$
- 1.C. (10 PTS.) Recall the proof from class that a lower bound on statistical query dimension implies a lower bound on the correlational statistical query complexity of the corresponding supervised learning problem. Adapt the proof to show the following slightly refined variant.

Suppose a finite set of functions $\mathcal{F} = \{f_1,\ldots,f_m\}$ satisfies $|\mathbb{E}_{x \sim \mathcal{N}(0,I)}[f_i(x)f_j(x)]| \leqslant \epsilon$ and $\mathbb{E}_{x \sim \mathcal{N}(0,I)}[f_i(x)^2] = 1$ for all $i \neq j$. Then any CSQ algorithm for supervised learning functions in ${\cal F}$ over Gaussian examples requires at least $m(\tau^2-\epsilon)/2$ queries or tolerance less than τ to produce a function that achieves test loss at most $2 - 2\epsilon$.

1.D. (10 PTS.) In the previous pset you used the existence of an exponentially large family of pairwise separated unit vectors. We will use it again here. Formally, you may use that for any ϵ , there exists a set S of $\Omega(e^{C\epsilon^2d})$ vectors in S^{d-1} , for some absolute constant $C > 0$, such that any two distinct vectors $u, v \in S$ satisfy $|\langle u, v \rangle| \leq \epsilon$.

Prove that for any $q \geq 1$, any CSQ algorithm for supervised learning functions of the form $\sigma(\langle w, \cdot \rangle)$ over Gaussian examples requires at least q queries or tolerance at most $O(\log^{\ell^*/4}(qd)/d^{\ell^*/4})$ to produce a function that achieves test loss at most 1.

Solution:

1.A.

1.B.

1.C.

1.D.

(70 pts.) A SIMPLE PHASE TRANSITION $(11/4)$

Motivation: In this problem we will explore a simple example of a phase transition for an Ising model.

Setup: Given inverse temperature $\beta \geq 0$, consider the Gibbs measure

$$
\mu_{n,\beta}(x) = \frac{1}{Z_n(\beta)} \exp\left(\frac{\beta}{n} \sum_{1 \leq i < j \leq n} x_i x_j\right), \quad x \in \{\pm 1\}^n,
$$

where $Z_n(\beta) \triangleq \sum_x \exp(\frac{\beta}{n} \sum_{1 \leqslant i < j \leqslant n} x_i x_j)$ is the partition function.

Given x, we define its *magnetization* by $\overline{x} \triangleq \frac{1}{n} \sum_i x_i \in [-1,1].$

We will show that above a critical temperature, the magnetization of a typical sample from the Gibbs measure is concentrated around 0, but below the critical temperature, the magnetization concentrates around two distinct values.

2.A. (20 PTS.) For $m \in [-1,1]$, define $\psi_{\beta}(m) \triangleq \beta m^2/2 + H(\frac{1+m}{2})$, where $H(z) \triangleq -z\ln z - (1-z)\ln(1-z)$ denotes the entropy function. Prove that for any $m \in \{-n/n, (-n+2)/n, \ldots, (n-2)/n, n/n\}$,

$$
\frac{1}{n+1} \leqslant \Pr_{x \sim \mu_{n,\beta}}[\overline{x} = m] \cdot Z_n(\beta) e^{-n\psi_\beta(m) + \beta/2} \leqslant 1.
$$

(Hint: You may find the bound $\frac{1}{n+1}e^{nH(m)} \leqslant {n \choose mn} \leqslant e^{nH(m)}$ useful.)

Next, we will show that the free energy $\log Z_n(\beta)$ can be approximated variationally in terms of the ψ_β functional.

2.B. (10 PTS.) Let $\phi_*(\beta) \triangleq \sup_{m \in [-1,1]} \psi_{\beta}(m)$. Use the previous part to prove that

$$
|\log Z_n(\beta) - n\phi_*(\beta) + \beta/2| \lesssim \log(n).
$$

- **2.C.** (30 PTS.) Compute the maximizers of ψ_β over $m \in [-1, 1]$. Your answer will depend on whether β lies above or below some threshold β_c , which you should identify. For $\beta > \beta_c$ larger than a threshold, you will not be able to express the solutions analytically, so provide a simple equation in m whose solutions correspond to the maximizers of ψ_{β} .
- **2.D.** (10 PTS.) Use the preceding parts to prove that for any constant $\epsilon > 0$, there is a $\delta_{\beta,\epsilon} > 0$ which is independent of n such that
	- When $\beta \leq \beta_c$,

$$
\Pr_{x \sim \mu_{n,\beta}}[|\overline{x}| \leqslant \epsilon] \geqslant 1 - e^{-n\delta_{\beta,\epsilon}}
$$

• When $\beta > \beta_c$, there exists a constant $0 < m_*(\beta) \leq 1$ such that

$$
\mathop{\mathbf{Pr}}_{x\sim\mu_{n,\beta}}[|\overline{x}-m_*(\beta)|\leqslant\epsilon]=\mathop{\mathbf{Pr}}_{x\sim\mu_{n,\beta}}[|\overline{x}+m_*(\beta)|\leqslant\epsilon]=1/2-e^{-n\delta_{\beta,\epsilon}}
$$

2.E. (0 PTS.) [Optional] Carry out an analogous computation to the preceding parts for the Gibbs measure given by

$$
\mu_{n,\beta,h}(x) \propto \exp\left(\frac{\beta}{n} \sum_{1 \leqslant i < j \leqslant n} x_i x_j + \langle h, x \rangle\right)
$$

for parameter $h > 0$.

Solution:

- 2.A.
- 2.B.
- 2.C.

2.D.

2.E.