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This problem set will cover concepts from the units on computational complexity and statistical physics.

1 (60 pts.) SQ Dimension Bounds for Generalized Linear Models (10/23)

Motivation: In this exercise you will try your hand at proving a CSQ lower bound for a supervised learning problem. This will involve
integrating what you learned about statistical query dimension with tools from Hermite analysis that were touched upon in the unit
on supervised learning.

Setup: For every ℓ ∈ Z⩾0, let ϕℓ denote the normalized degree-ℓ Hermite polynomial given by

ϕℓ(x) =
1√
ℓ!
Heℓ(x) ,

where Heℓ is the ℓ-th probabilist’s Hermite polynomial. As discussed in class, these form an orthonormal basis for the space of
functions which are L2 integrable with respect to the standard Gaussian measure.

Let σ : R → R denote an activation function with Hermite expansion σ(x) =
∑∞
ℓ=0 cℓϕℓ(x). Suppose σ satisfies the normalization

condition
Eg∼N (0,I)[σ(g)

2] = 1 .

Suppose we are given samples {(xi, yi)}Ni=1 where xi ∼ N (0, I) and yi = σ(⟨w, xi⟩) for some unknown w ∈ Sd−1. In this exercise,
we will establish a CSQ lower bounds for this problem.

1.A. (25 pts.) Given vectors u, v ∈ Sd−1, prove the identity

Ex∼N (0,I)[ϕℓ(⟨u, x⟩) · ϕℓ′(⟨v, x⟩)] = I[ℓ = ℓ′] · ⟨u, v⟩ℓ .

You may use the fact that for g ∼ N (0, 1), E[etg] = et
2/2 for all t ∈ R, and that the probabilist’s Hermite polynomials Heℓ are

given by the generating function

etg−t
2/2 =

∞∑
ℓ=0

1

ℓ!
Heℓ(g)t

ℓ .

1.B. (15 pts.) Let ℓ∗ denote the information exponent of σ, that is, the smallest ℓ ∈ Z⩾0 for which cℓ ̸=0. Use the above to prove
that E[σ(⟨u, x⟩)σ(⟨v, x⟩)] ⩽ ⟨u, v⟩ℓ∗ .

1.C. (10 pts.) Recall the proof from class that a lower bound on statistical query dimension implies a lower bound on the correlational
statistical query complexity of the corresponding supervised learning problem. Adapt the proof to show the following slightly
refined variant.
Suppose a finite set of functions F = {f1, . . . , fm} satisfies |Ex∼N (0,I)[fi(x)fj(x)]| ⩽ ϵ and Ex∼N (0,I)[fi(x)

2] = 1 for all i ̸= j.
Then any CSQ algorithm for supervised learning functions in F over Gaussian examples requires at least m(τ2 − ϵ)/2 queries or
tolerance less than τ to produce a function that achieves test loss at most 2− 2ϵ.

1.D. (10 pts.) In the previous pset you used the existence of an exponentially large family of pairwise separated unit vectors. We
will use it again here. Formally, you may use that for any ϵ, there exists a set S of Ω(eCϵ

2d) vectors in Sd−1, for some absolute
constant C > 0, such that any two distinct vectors u, v ∈ S satisfy |⟨u, v⟩| ⩽ ϵ.
Prove that for any q ⩾ 1, any CSQ algorithm for supervised learning functions of the form σ(⟨w, ·⟩) over Gaussian examples
requires at least q queries or tolerance at most O( logℓ

∗/4(qd)/dℓ
∗/4) to produce a function that achieves test loss at most 1.

Solution:
1.A.

1.B.

1.C.

1.D.
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2 (70 pts.) A Simple Phase Transition (11/4)

Motivation: In this problem we will explore a simple example of a phase transition for an Ising model.

Setup: Given inverse temperature β ⩾ 0, consider the Gibbs measure

µn,β(x) =
1

Zn(β)
exp

(β
n

∑
1⩽i<j⩽n

xixj

)
, x ∈ {±1}n ,

where Zn(β) ≜
∑
x exp(

β
n

∑
1⩽i<j⩽n xixj) is the partition function.

Given x, we define its magnetization by x ≜ 1
n

∑
i xi ∈ [−1, 1].

We will show that above a critical temperature, the magnetization of a typical sample from the Gibbs measure is concentrated around
0, but below the critical temperature, the magnetization concentrates around two distinct values.

2.A. (20 pts.) For m ∈ [−1, 1], define ψβ(m) ≜ βm2/2 +H( 1+m2 ), where H(z) ≜ −z ln z − (1− z) ln(1− z) denotes the entropy
function. Prove that for any m ∈ {−n/n, (−n+ 2)/n, . . . , (n− 2)/n, n/n},

1

n+ 1
⩽ Pr
x∼µn,β

[x = m] · Zn(β)e−nψβ(m)+β/2 ⩽ 1 .

(
Hint: You may find the bound 1

n+1e
nH(m) ⩽

(
n
mn

)
⩽ enH(m) useful.

)
Next, we will show that the free energy logZn(β) can be approximated variationally in terms of the ψβ functional.

2.B. (10 pts.) Let ϕ∗(β) ≜ supm∈[−1,1] ψβ(m). Use the previous part to prove that

| logZn(β)− nϕ∗(β) + β/2| ≲ log(n) .

2.C. (30 pts.) Compute the maximizers of ψβ over m ∈ [−1, 1]. Your answer will depend on whether β lies above or below some
threshold βc, which you should identify. For β > βc larger than a threshold, you will not be able to express the solutions
analytically, so provide a simple equation in m whose solutions correspond to the maximizers of ψβ .

2.D. (10 pts.) Use the preceding parts to prove that for any constant ϵ > 0, there is a δβ,ϵ > 0 which is independent of n such that

• When β ⩽ βc,
Pr

x∼µn,β

[|x| ⩽ ϵ] ⩾ 1− e−nδβ,ϵ

• When β > βc, there exists a constant 0 < m∗(β) ⩽ 1 such that

Pr
x∼µn,β

[|x−m∗(β)| ⩽ ϵ] = Pr
x∼µn,β

[|x+m∗(β)| ⩽ ϵ] = 1/2− e−nδβ,ϵ

2.E. (0 pts.) [Optional] Carry out an analogous computation to the preceding parts for the Gibbs measure given by

µn,β,h(x) ∝ exp
(β
n

∑
1⩽i<j⩽n

xixj + ⟨h, x⟩
)

for parameter h > 0.

Solution:
2.A.

2.B.

2.C.

2.D.

2.E.
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