
PSET 3 Due on Tuesday Oct 29, 2024 at 11:59 pm ET

COMPSCI 2243: Algorithms for Data Science, Fall 2024 (Sitan Chen) Version: 1.0

Submitted by <name>

This problem set will cover concepts from the third unit on supervised learning. The questions are meant to be challenging, so as with
previous psets, do not feel discouraged if you get stuck and are unable to solve some of them. If you find that you are running low on time
to finish all the problems, our recommendation is to try to aim for breadth rather than depth – e.g., it is better to complete a few parts of
each of the questions, than to completely solve one of the questions and skip the others.

1 (50 pts.) Learning Bounded Polynomials Over the Hypercube

In class, we saw examples where Boolean functions in n variables that are well-approximated by degree-d polynomials can be PAC-
learned over the uniform distribution over {−1,+1}n using roughly nO(d) time and samples. In this problem, we will explore the same
setting but where the function is exactly given by a degree-d polynomial. This might seem like a strictly easier setting, but you will
encounter some surprising behavior that, rather remarkably, was only discovered two years ago!

Setup: Let ϵ, δ > 0, and let f : {−1,+1}n → R be a function over the Boolean hypercube with Fourier expansion

f(x) =
∑
S⊆[n]

f̂ [S] · xS . (1)

In this question, we will assume that f has degree at most d, that is, f̂ [S] = 0 for all S satisfying |S| > d. Furthermore, we will
assume that |f(x)| ⩽ 1 for all x ∈ {−1,+1}n. We refer to such functions as bounded polynomials.

Suppose we are given n independent samples (x1, y1), . . . , (xN , yN) for xi ∈ {−1,+1}n and yi = f(xi). In this problem, we will
explore how large N must be for PAC learning of bounded polynomials to be possible. Note that one can easily solve this problem with
polynomial regression using nO(d) samples, and a priori, one might suspect that this is optimal. Here you will show that, remarkably,
a refinement of polynomial regression allows one to learn using only Od(log n) many samples!1

You may use the following deep result from functional analysis, the Bohnenblust-Hille inequality , without proof:

Theorem 1.1. For any function f : {−1,+1}n → R of degree at most d, if r = 2d
d+1 , then(∑

S⊆[n]

|f̂ [S]|r
)1/r

⩽ Od(∥f∥∞) , (2)

where ∥f∥∞ ≜ maxx∈{−1,+1}n |f(x)|.

1.A. (4 pts.) Prove Eq. (2) for r = 2 (this is not used later but provides good intuition for what Theorem 1.1 is saying).

1.B. (5 pts.) Let β > 0 be a parameter to be tuned later. Propose an estimator for {f̂ [S]}S⊆[n] using the samples (x1, y1), . . . , (xN , yN).
If the estimate for f̂S is denoted by ϕS , give an upper bound on the number of samples N needed to ensure that

|ϕS − f̂ [S]| ⩽ β for all S ⊆ [n] (3)

with probability at least 1− δ. Denote the event of Eq. (3) by Eβ .

1.C. (4 pts.) How small would β have to be, and thus how big would N have to be, for the estimates ϕS in Part 1.B. to satisfy

E
x∼{−1,+1}n

[(f(x)−
∑
S⊆[n]

ϕSxS)
2] ⩽ ϵ2 ? (4)

Next, given a parameter η > 0, let Sbig denote the set of S ⊆ [n] for which |ϕS | ⩾ η, and likewise let Ssmall denote the set of S ⊆ [n]
for which |ϕS | < η.

1.D. (9 pts.) Use Theorem 1.1 to prove that, conditioned on the event Eβ holding,∑
S∈Ssmall

f̂ [S]2 ⩽ Od

(
(η + β)

2
d+1

)
. (5)

1.E. (18* pts.) Use Theorem 1.1 to prove that, conditioned on the event Eβ holding,∑
S∈Sbig

(ϕS − f̂ [S])2 ⩽ Od

(
β2(η − β)−

2d
d+1

)
. (6)

1Here the notation f(n) ⩽ Od(g(n)) denotes that there is a constant C depending only on d such that f(n) ⩽ Cd · g(n) for n sufficiently large.

1

1.F. (5 pts.) By removing some terms from the naive estimator
∑

S⊆[n] ϕSxS , propose an alternative estimator f ′ for f that
achieves squared error at most ν, i.e. such that Ex∼{−1,+1}n [(f ′(x)− f(x))2] ⩽ ν, where

ν = Od

(
β2(η − β)−

2d
d+1 + (η + β)

2
d+1

)
. (7)

1.G. (5 pts.) Conclude that there is some N = Od(log(n/δ)/ϵ
d+1) such that provided N ⩾ N , there is an algorithm for PAC learning

bounded polynomials of degree d to squared error ϵ with probability at least 1− δ using only N samples. Informally explain the
intuition for why the Bohnenblust-Hille inequality resulted in such a dramatic savings in the sample complexity dependence on
n compared to your answer in Part 1.C..

Solution:
1.A.

1.B.

1.C.

1.D.

1.E.

1.F.

1.G.

2

2 (65 pts.) PAC Learning MLPs with Vanilla PCA

In this problem, we will explore a simple approach to obtaining polynomial dependence on 1/ϵ and fixed-parameter tractability for the
following special class of one-hidden-layer MLPs:

f(x) =

k∑
j=1

ReLU(⟨wj , x⟩) , (8)

where w1, . . . , wk ∈ Rd are arbitrary, possibly linearly dependent, unit vectors.

Setup: We are given as input ε > 0 and independent samples (x1, y1), . . . , (xN , yN) where each xi ∼ N (0, Id) and yi = f(xi),
where f is a fixed function of the form Eq. (8). As we saw in class, polynomial regression yields an algorithm for (improper) PAC
learning such function to error ϵ in this setting in dpoly(k/ϵ) time and samples. In this problem, you will explore a simple algorithm
that properly PAC learns such functions in just (k/ϵ)O(k2) + poly(k, d, 1/ϵ) time and poly(k, d, 1/ϵ) samples.

2.A. (5 pts.) Given the samples (x1, y1), . . . , (xN , yN), propose an estimator M̂ whose expected value is given by the matrix
M ≜

∑k
i=1 wiw

⊤
i .

So we don’t have to worry about matrix concentration in this homework, in the rest of the parts you may assume that your estimator
M̂ from Part 2.A. satisfies

∥M̂ −M∥op ⩽ η (9)

for some sufficiently small η > 0, which it turns out holds with high probability with N = poly(kd/η) samples.

Let W be the subspace spanned by the top k singular vectors of M̂ . Let Π⊥ denote the projection to the orthogonal complement of
W .

2.B. (10 pts.) For every j ∈ [k], let rj = Π⊥wj . Prove that

r⊤j M̂rj ⩽ η∥rj∥2 . (10)(
Hint: Look at the (k + 1)

th singular value of M̂ .
)

2.C. (10 pts.) Prove that for all j ∈ [k],
r⊤j Mrj ⩾ ∥rj∥4 (11)

and conclude that ∥rj∥2 ⩽ 2η.

2.D. (10 pts.) Prove that for any vectors u, v ∈ Rd,

E
x∼N (0,Id)

[(ReLU(⟨u, x⟩)− ReLU(⟨v, x⟩))2] ⩽ ∥u− v∥2 . (12)

2.E. (10 pts.) Use Parts 2.C. and 2.D. to conclude that there exist vectors w̃1, . . . , w̃k in W , each of norm at most 1, such that

E
x∼N (0,Id)

[(
f(x)−

k∑
j=1

ReLU(⟨w̃j , x⟩)
)2]

⩽ η · poly(k) . (13)

Let (BW)k be the space of k-tuples of vectors in W each of norm at most 1. Let N be an η-net over this space, that is, a discrete
set of points in (BW)k such that for any (w̃1, . . . , w̃k) ∈ (BW)k, there exists (w′

1, . . . , w
′
k) ∈ N such that ∥w̃j − w′

j∥2 ⩽ η for all
j ∈ [k]. You may use without proof the fact that there is a (computationally efficient) construction of N of size at most (1/η)O(k2).

2.F. (5 pts.) Explain informally why one should expect N to have size exponential in k2.

2.G. (5 pts.) Prove that there exists (w′
1, . . . , w

′
k) ∈ N such that

E
x∼N (0,Id)

[(
f(x)−

k∑
j=1

ReLU(⟨w′
j , x⟩)

)2]
⩽ η · poly(k) . (14)

2.H. (5 pts.) Explain informally how to combine the preceding steps to obtain an algorithm with sample complexity poly(k, d, 1/ϵ)

and runtime (k/ϵ)O(k2) + poly(k, d, 1/ϵ) for PAC learning one-hidden-layer MLPs of the form Eq. (8).

2.I. (5 pts.) Explain informally why the algorithm in Part 2.H. does not contradict the CSQ lower bound of dΩ(k) from class.

Solution:
2.A.

3

2.B.

2.C.

2.D.

2.E.

2.F.

2.G.

2.H.

2.I.

4

