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This problem set will cover concepts from the second unit on sum-of-squares optimization.
The three questions have been labeled with the date of the lecture in which the relevant material is covered, to help you budget your time.
The questions are meant to be challenging, so as with previous psets, do not feel discouraged if you get stuck and are unable to solve some
of them. If you find that you are running low on time to finish all the problems, our recommendation is to try to aim for breadth rather
than depth – e.g., it is better to complete a few parts of each of the three questions, than to completely solve one of the three questions
and skip the others.

1 (40 pts.) Dotting i’s and crossing t’s with sum-of-squares (9/18)

Motivation: Pseudo-distributions can be quite intimidating at first glance; this exercise is designed to get you more comfortable
with these objects by digging into some of the technical steps that were swept under the rug in lecture. For example, in class, it
was claimed but not completely proven that the set of pseudo-distributions over solutions to a system of polynomial inequalities is a
finite-dimensional convex object that one can optimize over. In this exercise, we will work out the gory details for this claim, as well
as miscellaneous other technical claims about pseudo-distributions that were asserted without proof.

Let t ⩾ 2 be an even integer, and let z1, . . . , zn denote scalar-valued SoS variables. Let R[z1, . . . , zn] denote the ring of polynomials
in z1, . . . , zn with real-valued coefficients. For p ∈ R[z1, . . . , zn], we will often denote p(z1, . . . , zn) by the shorthand p(z). Let St

denote the ordered tuples α = (α1, . . . , αn) ∈ Zn
⩾0 such that

∑
i αi ⩽ t. Given α ∈ St, let zα ≜

∏
i z

αi
i . Let Nt ≜ |St|.

Let p1, . . . , pm ∈ R[z1, . . . , zn] be of degree at most t. Recall that a functional Ẽ : R⩽t[z1, . . . , zn] → R is said to be a degree-t
pseudo-expectation over z1, . . . , zn that satisfies the constraints

p1(z) ⩾ 0, . . . , pm(z) ⩾ 0 (1)

if the following properties are satisfied:

• Normalization: Ẽ[1] = 1,

• Linearity: Ẽ[a · p+ b · q] = a · Ẽ[p] + b · Ẽ[q] for all a, b ∈ R and polynomials p, q ∈ R[z1, . . . , zn] of degree at most t,

• Positivity: Ẽ[p(z)] ⩾ 0 for all polynomials p which are degree-⩽ t sums of squares, that is, p(z) =
∑

i qi(z)
2 for some

polynomials qi of degree at most t/2.

• Respecting constraints:
Ẽ
[ ∑
S⊆[m]

fS(z) ·
∏
j∈S

pj(z)
]
⩾ 0 . (2)

for any polynomials {fS}S⊆[m] which are sums of squares such that the polynomial fS(z) ·
∏

i∈S pi(z) has degree at most t

for every S ⊆ [m]. For any polynomial inequality of the form Eq. (2), we say that it has a degree-⩽ t SoS proof using the
constraints p1(z) ⩾ 0, . . . , pm(z) ⩾ 0. Formally, the proof is specified by the polynomials {fS}S⊆[m]. You may also find these
notes helpful for these definitions.

1.A. (5 pts.) Define the moment matrix M ∈ RNt/2×Nt/2 for Ẽ to be the matrix whose rows and columns are indexed by ordered
tuples in St/2, where

Mα,β = Ẽ[zαzβ ] .

Prove that the “positivity” condition for Ẽ is satisfied if and only if the moment matrix M is a positive semidefinite matrix (you
may assume linearity is satisfied).

1.B. (9 pts.) Write down a collection of linear functions ℓ1, . . . , ℓa : RNt/2×Nt/2 → RNt/2×Nt/2 such that the “respecting constraints”
condition holds if and only if the matrices ℓ1(M), . . . , ℓa(M) are positive semidefinite, where M denotes the moment matrix.(
Hint: Start with the special case of m = 1.

)
1.C. (12 pts.) A semidefinite program is an optimization problem of the form

min
X

⟨C,X⟩ s.t. ⟨A1, X⟩ = b1, . . . , ⟨As, X⟩ = bs, and X ⪰ 0 ,

where X is a d × d matrix-valued variable, the matrices A1, . . . , As, C are fixed d × d matrices, and b1, . . . , bs are fixed scalar
values. Here ⟨·, ·⟩ denotes the trace inner product, e.g. ⟨C,X⟩ =

∑
i,j CijXij , and the notation X ⪰ 0 denotes that X must

be positive semidefinite. Semidefinite programs, like linear programs, can be solved in polynomial time, e.g. via the ellipsoid
algorithm or interior point methods.
Let p1, . . . , pm be as in Eq. (1), and let q ∈ R[z1, . . . , zn] be some polynomial of degree at most t. Give a proof that the
optimization problem

min
Ẽ

Ẽ[q(z)] ,
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where Ẽ ranges over degree-t pseudo-expectations satisfying Conditions 1-4 above, can be formulated as a semidefinite program.

The following questions are meant to verify some elementary facts about sum-of-squares proofs and pseudo-expectations that were
used in lecture. As before, let t ⩾ 2 be even.

1.D. (5 pts.) Let a, b be SoS variables. Give a degree-t SoS proof that (a+ b)t ⩽ 2t−1(at + bt).

1.E. (9 pts.) Let a1, . . . , an, b1, . . . , bn be SoS variables, and suppose a2i = ai for all i ∈ [n]. Give a degree-3t SoS proof that(∑
i

aibi

)t

⩽
(∑

i

ai

)t−1

·
(∑

i

aib
t
i

)
For this part, you may assume that t is a power of two. We will provide 5 points of extra credit for a proof for general even t.

1.F. (0 pts.) (Ungraded) Let p ∈ R[z1, . . . , zn] be a sum of squares polynomial of degree at most ℓ. Prove that for any degree-ℓt
pseudo-expectation Ẽ over z1, . . . , zn,

Ẽ[p(z)t−2] ⩽ Ẽ[p(z)t](t−2)/t .

Solution:
1.A.

1.B.

1.C.

1.D.

1.E.

1.F.

1.G.
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2 (60 pts.) Robust mean estimation with SoS (9/23)

Motivation: It turns out the ideas from the SoS analyses for robust regression and mixtures of Gaussians also yield a novel algorithm
for outlier-robust mean estimation. While there are by now more practical algorithms for this, in this problem we will explore a
less practical approach that has the benefit of being conceptually simple in the framework of SoS and of being a good exercise for
solidifying one’s understanding of how to apply SoS to statistical problems.
Setup: Let 0 < η < 1/2 be a known parameter, and let q be an arbitrary unknown distribution over Rd with mean µ∗ and identity
covariance, for µ∗ ∈ Rd unknown. Let x1, . . . , xn be samples generated as follows. One starts with i.i.d. samples x∗

1, . . . , x
∗
n from q,

and a random η · n-sized subset of the points are given to an all-powerful adversary, who then arbitrarily modifies these points. We
do not see x∗

1, . . . , x
∗
n. Given only x1, . . . , xn, our goal is to estimate µ∗ to within small additive error.

Let a∗i ≜ 1i not corrupted.
To avoid worrying about concentration inequalities, in this exercise you may assume the following hold:∥∥∥ 1

(1− η)n

n∑
i=1

a∗i (x
∗
i − µ∗)(x∗

i − µ∗)⊤ − 1

∥∥∥
op

⩽ 0.1

∥∥∥ 1
n

n∑
i=1

a∗i (x
∗
i − µ∗)

∥∥∥
2
⩽ ϵ

for some small ϵ (because the set of uncorrupted points is a random (1− η)n-sized subset of the data, ϵ can be made arbitrarily small
by taking n large enough).

2.A. (8 pts.) Using SoS variables a1, . . . , an and µ which respectively correspond to indicator variables for a (1− η)n-sized subset
of [n] and an estimate for the mean, write down an SoS program for solving this task. For the purposes of this homework, you
are allowed to “cheat” slightly and include a constraint quantified over all vectors. If you are interested, please see the last three
pages of the notes for how to make this more formal.(
Hint: Note that you do not necessarily need to minimize an objective function for this problem.

)
2.B. (9 pts.) Give a degree-⩽ 4 SoS proof that( 1

n

∑
i

aia
∗
i

)
·∥µ−µ∗∥2 =

1

n

∑
i

a∗i ⟨x∗
i − µ∗, µ− µ∗⟩︸ ︷︷ ︸
A

+
1

n

∑
i

(ai − 1)a∗i ⟨x∗
i − µ∗, µ− µ∗⟩︸ ︷︷ ︸

B

+
1

n

∑
i

(1− a∗i )ai⟨xi − µ, µ− µ∗⟩︸ ︷︷ ︸
C

.

(Note that the inner product in the third sum is slightly different from the one in the first two sums on the right-hand side.)
2.C. (5 pts.) Give a degree-⩽ 4 SoS proof that( 1

n

∑
i

aia
∗
i

)
· ∥µ− µ∗∥2 ⩾ (1− 2η) · ∥µ− µ∗∥2 .

2.D. (6 pts.) Give a degree-⩽ 2 SoS proof that A2 ⩽ ϵ2 · ∥µ− µ∗∥2.
2.E. (6 pts.) Give a degree-⩽ 4 SoS proof that B2 ⩽ O(η) · ∥µ− µ∗∥2.
2.F. (6 pts.) Give a degree-⩽ 6 SoS proof that C2 ⩽ O(η) · ∥µ− µ∗∥2.
2.G. (5 pts.) By combining Parts 2.C. - 2.F., conclude that for any degree-6 pseudo-distribution Ẽ over solutions to the SoS

program in Part 2.A., we have
Ẽ[∥µ− µ∗∥4] ⩽ (1− 2η)−2 ·O(ϵ2 + η) · Ẽ[∥µ− µ∗∥2] .

2.H. (5 pts.) Use pseudo Cauchy-Schwarz (from Lecture 6) to conclude that Ẽ[∥µ− µ∗∥2] ⩽ (1− 2η)−2 ·O(ϵ2 + η).
2.I. (10 pts.) Given a degree-6 pseudo-distribution Ẽ over solutions to the SoS program in Part 2.A., propose an estimator µ̂ for

µ∗. Use pseudo Cauchy-Schwarz to establish that ∥µ̂− µ∗∥ ⩽ (1− 2η)−1 ·O(ϵ+
√
η).

Solution:
2.A.

2.B.

2.C.

2.D.

2.E.

2.F.

2.G.

2.H.

2.I.
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