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This problem set will cover concepts from the first unit on tensor decomposition.
The three questions have been labeled with the date of the lecture in which the relevant material is covered, to help you budget your time.
The questions are meant to be challenging, so as with pset 0, do not feel discouraged if you get stuck and are unable to solve some of them.
If you find that you are running low on time to finish all the problems, our recommendation is to try to aim for breadth rather than depth
– e.g., it is better to complete a few parts of each of the three questions, than to completely solve one of the three questions and skip the
others.

1 (50 pts.) Fun with moments and tensors (9/9)

Motivation: In class we saw a few examples where, by manipulating the moments of some probability distribution, we produced
tensors whose components correspond to the parameters of that distribution, at which point we could use Jennrich’s algorithm to
learn those parameters. In this exercise, we will explore two toy applications of tensor decomposition to help you become comfortable
with designing tensors using such moment manipulations.

1.A. (25 pts.*) [Learning a low-rank polynomial]
Setup: Let v1, . . . , vd ∈ Rd. You may assume that d ⩾ 4. Let V ∈ Rd×d be the matrix whose rows consist of v1, . . . , vd, and
suppose that V is invertible.
Suppose we are given many pairs of the form (x, y) where x ∼ N (0,1d) and

y =

d∑
i=1

⟨vi, x⟩3 .

Question: Give an algorithm based on tensor decomposition that can learn v1, . . . , vd to small error. The algorithm should
involve estimating various moments of the joint distribution on (x, y), i.e. quantities of the form E[p(x, y)] for various choices
of polynomial p : Rd+1 → R. You may assume in your proof of correctness that you can compute these moments exactly.
(Note: this can be solved just by using polynomial regression, but this exercise is asking for a different algorithm. While the latter
might seem like an odd choice in the setting above, we will see later in this course how to use ideas based on this alternative
algorithm to prove results that cannot be obtained through polynomial regression.)(
Hint: Consider polynomials of the form p(x, y) = y ·

∏
j∈S xj for various choices of subsets S ⊆ [d] of size at most 3.

)
1.B. (25 pts.*) [Learning a simple nonlinear pushforward]

Setup: Let v1, . . . , vd and V be as in the previous question. Consider a pushforward distribution q over Rd defined as follows.
To sample from q, one samples a fresh vector g ∼ N (0,1d) and outputs the vector w ∈ Rd whose j-th coordinate is given by

wj =

d∑
i=1

(vj)i · g2i .

Question: Give an algorithm based on tensor decomposition that, given samples from q, can learn the columns of V up to
permutation. The algorithm should involve estimating various moments of q, and as in Part 1.A., you may assume in your proof
of correctness that you can compute these moments exactly.

Solution:
1.A.

1.B.
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2 (50 pts.) Condition number and noise robustness of eigendecomposition (9/9)

Motivation: In the first two lectures we saw two closely related algorithms, matrix pencil method and Jennrich’s algorithm, that both
rely on computing the eigendecomposition of some matrix. In lecture, these algorithms were presented under the assumption that we
had exact access to the matrix when, in applications of these algorithms, we only have access to the matrix plus some additive noise.
In this problem, you will show that such eigendecompositions are “robust” to this noise.

Setup: Let A be an n × n diagonalizable matrix with eigendecomposition A = QΛQ−1 where λi = Λii for each i ∈ [n] are the
eigenvalues of A and the columns q1, . . . , qn of Q are unit vectors corresponding to eigenvectors of A. Define δ := mini ̸=j |λi − λj |.
Let

Ã = A+∆ ,

where ∆ is an n× n matrix and represents noise. Our goal will be to establish that the eigenvalues and eigenvectors of Ã are close
to those of A, provided three conditions hold:

(a) ∥∆∥ is sufficiently small,

(b) The eigenvalues of A are sufficiently distinct, i.e. δ is not too small,

(c) Q is “robustly full rank.”

Aside: We first formalize what it means to be robustly full rank. Let κ(Q) = ∥Q∥/σmin(Q) denote the condition number of Q,
where ∥Q∥ is the operator norm of Q and σmin(Q) is the minimum singular value of Q. Note that if Q is not full rank, then condition
number is infinite. More generally, if Q is “close” to being full rank in the sense that there is a linear combination of columns of Q
which has small norm, where the coefficients are not too small, then κ(Q) is large. If κ(Q) is small, then we think of Q as being
“robustly full rank.” Note that κ(Q) is scale-invariant: for any α > 0, κ(α ·Q) = κ(Q).

2.A. (5 pts.) Let ∆̃ = Q−1∆Q. Verify that
Q−1ÃQ = Λ+ ∆̃ .

Then show that
∥∆̃∥max ⩽ κ(Q)∥∆∥ .

In the next question you may use the following theorem:

Theorem 2.1 (Gershgorin’s disk theorem). Let M ∈ Rn×n. All eigenvalues of M lie in the union of disks ∪iCi where

Ci ≜ {z ∈ C : ∥z −Mii∥ ⩽ ρi} for ρi ≜
∑
j:j ̸=i

|Mij |.

2.B. (15 pts.) Use Gershgorin’s disk theorem to show that when

r := max
i

∑
j

|∆̃ij | < δ/2 ,

then Ã has distinct eigenvalues λ̃1, . . . , λ̃n, and furthermore

|λi − λ̃i| < δ/2 (1)

for all i ∈ [n].

2.C. (2 pts.) Conclude from Parts 2.A. and 2.B. that Ã is diagonalizable when

∥∆∥ <
δ

2κ(Q)n
(2)

and has eigenvalues λ̃1, . . . , λ̃n satisfying Eq. (1).

2.D. (18 pts.*) Assume (2) holds and let Ã = Q̃Λ̃Q̃−1 be the eigendecomposition of Ã where the columns q̃1, . . . , q̃n of Q̃ are unit
vectors corresponding to eigenvectors of Q̃ with eigenvalues λ̃1, . . . , λ̃n respectively. We will now argue that the eigenvectors of
Ã are close to those of A.
To formalize this, let W be an n× n matrix such that q̃i =

∑
j Wijqj for each i ∈ [n]. Show

|Wij | ⩽
2∥∆∥

δ · σmin(Q)

for all i ̸= j.(
Hint: Write Ãq̃i in two different ways, one by using Ã = A+∆, and the other by using q̃i =

∑
j Wijqj . You may also find it

helpful to use the rows of Q−1.
)
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2.E. (10 pts.) Show that for all i ∈ [n], there is some σi ∈ C satisfying |σi| = 1 such that

∥qi − σiq̃i∥ ⩽ O
( n∥∆∥
δ · σmin(Q)

)
for every i ∈ [n]. This means that if the noise is relatively small then Q̃ is close to Q.

Solution:
2.A.

2.B.

2.C.

2.D.

2.E.
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3 (50 pts.) Landscape analysis for orthogonal tensor decomposition (9/11)

Motivation: In class we saw an analysis of tensor power method for orthogonal tensor decomposition, as well as a formal connection
between tensor power method and gradient descent. In this exercise, we explore an alternative approach to orthogonal tensor
decomposition: directly analyzing the optimization landscape in order to show that gradient descent converges to a component of the
tensor.

Setup: Throughout, let

T =

d∑
i=1

λiu
⊗3
i

for u1, . . . , ud ∈ Rd a collection of orthonormal vectors and λ1, . . . , λd > 0. Let p : Rd → R be the associated cubic polynomial

p(x) =
∑
i

λi⟨ui, x⟩3 .

The result we will prove is the following:

Theorem 3.1. Let x ∈ Sd−1 be any point for which p(x) ⩾ 0. Then x is a strict local maximum for p over the domain Sd−1 if
and only if x = ui.1

In other words, there are no “spurious local maxima” for the objective function p, which means that we can find a component ui of
the tensor T simply by running an appropriate implementation of gradient descent.2

3.A. (2 pts.) It suffices to establish Theorem 3.1 when u1, . . . , ud are the standard basis vectors, i.e. when ui = (0, . . . , 0, 1, 0, . . . , 0)
where the 1 entry is in the i-th coordinate. Give an informal argument for why this is the case.

For the remaining questions in this exercise, we will assume that u1, . . . , ud are the standard basis vectors.

3.B. (10 pts.) Prove that every ui is a strict local maximum.
3.C. (3 pts.) Recall that any local maximum x of p over Sd−1 is a stationary point, that is, the projection of the gradient of p at

x to the tangent space at x is zero. Also recall that the projector to the tangent space at x is the operator 1− xx⊤. With this
in mind, prove that any local maximum x satisfies

λix
2
i = p(x) · xi

for all i ∈ [d].
3.D. (10 pts.) Prove that if x ∈ Sd−1 satisfies p(x) = 0, then x is not a strict local maximum.(

Hint: Consider the effect of perturbing one of the coordinates of x by a small amount and rescaling so that the vector has unit
norm. Alternatively, use Part 3.C..

)
We now arrive at the trickiest part of the proof. Let x ∈ Sd−1 be any point that satisfies p(x) > 0 and has more than one nonzero

coordinate. We need to show that such an x cannot be a local maximum. Let S∗ ⊂ [d] denote the subset of coordinates of x
which are nonzero.

3.E. (5 pts.) Let S be any proper subset of S∗. Construct a unit vector w such that 1) ⟨w, x⟩ = 0, 2) the entries of w indexed by
S are given by scaling all the entries of x indexed by S by the same factor, and 3) the entries of w indexed by [d]\S are given
by scaling all the entries of x indexed by [d]\S by the same factor.

3.F. (20 pts.*) Prove that x is not a strict local maximum.(
Hint: Perturb x in the direction of w and rescale it to give a unit vector x′ = δw+

√
1− δ2x. Argue that p achieves a higher

value at x′ than at x. You may find it helpful to Taylor expand p(x′) around
√
1− δ2x and apply Part 3.C.

)
Solution:
3.A.

3.B.

3.C.

3.D.

3.E.

3.F.

1Recall that a point x ∈ Sd−1 is said to be a strict local maximum for a function f : Sd−1 → R if there exists some ϵ > 0 such that for all x′ ∈ Sd−1 which
are distinct from x and which satisfy ∥x′ − x∥2 ⩽ ϵ, we have f(x′) < f(x).

2There are some nontrivial subtleties regarding escaping from saddle points that we will not cover in this course. If you are interested, one of the canonical
references is this paper.
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