
PSET 0 Due on Aug 29, 2024 at 11:59 pm ET
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Submitted by <name>

This assignment is meant to help gauge your level of comfort with probability and linear algebra. Your responses will be taken into
consideration in the course lottery, but we hope it will also be a good way for you to assess whether you will be comfortable with the
material in this course. Given that we are asking you complete this on relatively short notice and given that the semester has not yet begun,
do not feel discouraged if you are unable to finish some of the questions. In cases where you feel that you see a rough path to solution but
do not have the time to work out all of the technical details, we encourage you to provide a rough sketch of your intuition. As this pset
is ungraded, the most important thing is for you to convince yourself that you know how, at least in principle, to do a decent fraction of
these questions.
For the course application, you are only expected to submit a solution to one of the three questions. If you choose to solve
more than one, we will only take into consideration the first one for which you provide solutions.
Note: In all psets for this course we will mark the trickier questions with asterisks, to help with time management.

1 (18 pts.) Covariance estimation

In this problem, we will explore how many samples n are needed to form an accurate estimator for the covariance matrix Σ of an
unknown distribution.

Let q be an unknown probability distribution over Rd such that EX∼q[X] = 0 and EX∼q[XX⊤] = Σ for some matrix Σ ∈ Rd×d.
Furthermore, suppose that there is some parameter C > 0 such that for X ∼ q, the bound ∥X∥22 ⩽ C holds almost surely. Let
X1, . . . , Xn be i.i.d. samples from q.

The main tool we will exploit is the following concentration inequality, which you may use below without proof:

Theorem 1.1 (Matrix Bernstein inequality). Let A1, . . . , An be random d×d symmetric matrices such that for every i, E[Ai] = 0
and ∥Ai∥op ⩽ γ almost surely. Then for all ϵ > 0,

Pr
[∥∥∥∑

i

Ai

∥∥∥
op

⩾ ϵ
]
⩽ 2d exp

(
− ϵ2

2(σ2 + γϵ/3)

)
, for σ2 ≜

∥∥∥∑
i

E[A2
i ]
∥∥∥
op
, (1)

where ∥·∥op denotes the operator norm.

1.A. (1 pts.) Given the samples X1, . . . , Xn from q, what matrix would you form as your estimator for Σ?

1.B. (5 pts.) Let Σ̂ denote your answer to the previous question. Using Theorem 1.1, show that for all 0 < ϵ < 1,

Pr
[
∥Σ̂− Σ∥op ⩾ ϵ · ∥Σ∥op

]
⩽ 2d exp

(
−nϵ2 · Ω(∥Σ∥op/C)

)
. (2)

1.C. (2 pts.) Let 0 < ϵ < 1. Using Eq. (2), determine an upper bound (up to constant factors) on the number of samples n needed
to ensure that ∥Σ̂− Σ∥op ⩽ ϵ · ∥Σ∥op with probability at least 99%.

1.D. (5 pts.*) One intriguing feature of Theorem 1.1 is the extra factor of d on the right-hand side. Please explain why one might
expect this factor to appear, and provide a specific example of a distribution over A1, . . . , An where this factor is unavoidable.
A formal proof is not required here.

(
Hint: Consider when A1, . . . , An are diagonal matrices.

)
1.E. (5 pts.*) Give an example of a distribution q for which the upper bound you proved in Part 1.C. is optimal for C = d, Σ = Id,

and ϵ = 1/2 (up to constant factors), as well as a proof of optimality.
(
Hint: Consider q supported on a finite set of points.

)
Solution:
1.A.

1.B.

1.C.

1.D.

1.E.
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2 (18 pts.) Learning intervals and hyper-rectangles

In this problem we explore a toy supervised learning problem and prove some rudimentary generalization bounds.

Let a ⩽ b be unknown real values, and define the function f : R → {0, 1} by1

f(x) ≜ 1[a ⩽ x ⩽ b] . (3)

Suppose we are given data points (x1, y1), . . . , (xn, yn) such that x1, . . . , xn ∈ R are i.i.d. over some arbitrary, unknown distribution
q, and yi = f(xi) for all i. While it is not necessary, you may assume that q has a continuous density.

2.A. (1 pts.) Given the data points (x1, y1), . . . , (xn, yn), what would you output as your estimator for the unknown parameters a
and b?

2.B. (6 pts.) Let â and b̂ denote your answer to the previous question. Given 0 < ϵ, δ < 1, determine an upper bound on the
number of samples n needed to ensure that

Pr
x∼q

[
1[â ⩽ x ⩽ b̂] = f(x)

]
⩾ 1− ϵ (4)

with probability at least 1− δ over the randomness of x1, . . . , xn.

Next, we consider the natural high-dimensional generalization of the above question. Let a1, . . . , ad, b1, . . . , bd ∈ R, and define the
function g : Rd → {0, 1} by

g(x) ≜ 1[x ∈ [a1, b1]× · · · × [ad, bd]] . (5)

The set [a1, b1]× · · · × [ad, bd] ⊂ Rd denotes the Cartesian product of the intervals and is called a hyper-rectangle.

Suppose we are given data points (x1, y1), . . . , (xn, yn) such that x1, . . . , xn ∈ Rd are i.i.d. over some arbitrary, unknown distribution
q, and yi = f(xi) for all i.

2.C. (5 pts.) Propose an estimator â1, . . . , âd, b̂1, . . . , b̂d for the unknown parameters a1, . . . , ad, b1, . . . , bd given the data points
(x1, y1), . . . , (xn, yn), and given 0 < ϵ, δ < 1, determine an upper bound on the number of samples n needed to ensure that

Pr
x∼q

[
1[x ∈ [â1, b̂1]× · · · × [âd, b̂d]] = g(x)

]
⩾ 1− ϵ (6)

with probability at least 1− δ over the randomness of x1, . . . , xn.
(
Hint: Directly use your solution to 2.B.

)
2.D. (6 pts.) Suppose we additionally are given a set S of M hyper-rectangles and are guaranteed that the parameters a1, . . . , ad,

b1, . . . , bd correspond to one such hyper-rectangle in S. In this case, propose an estimator â1, . . . , âd, b̂1, . . . , b̂d given the data
points (x1, y1), . . . , (xn, yn) and S. Determine an alternative upper bound on the number of samples n needed to ensure that
Eq. (6) holds with probability 1− δ. This upper bound should depend on M rather than d.

Solution:
2.A.

2.B.

2.C.

2.D.

1Here the notation 1[·] denotes the indicator function, i.e. if x ∈ R satisfies a ⩽ x ⩽ b, then 1[a ⩽ x ⩽ b] = 1, and otherwise 1[a ⩽ x ⩽ b] = 0.
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3 (18 pts.) Boolean and Gaussian vectors

Let d ∈ N be even. Let x be sampled uniformly at random from {±1}d, and let g be a standard Gaussian vector, i.e. g ∼ N (0, Idd).
In this problem we will explore the extent to which projections of these vectors are similar. Let v∗ ∈ Rd be the unit vector given by
(1/

√
d, . . . , 1/

√
d).

Given two probability distributions p, q over R, define the total variation distance

dTV(p, q) ≜ sup
S⊂R

∣∣p(S)− q(S)
∣∣ , (7)

where p(S) denotes the probability that x ∼ p satisfies x ∈ S, and q(S) is defined similarly. Define the Kolmogorov distance

dK(p, q) ≜ sup
a∈R

∣∣∣Pr
x∼p

[x ⩽ a]− Pr
x∼q

[x ⩽ a]
∣∣∣ . (8)

3.A. (2 pts.) True/False: The total variation distance between ⟨v∗, x⟩ and ⟨v∗, g⟩ converges to zero as d → ∞. If true, what is this
theorem called? Otherwise, prove that it is false.

3.B. (4 pts.) Prove the following two bounds:

Pr[|⟨v∗, x⟩| > t] ⩽ 2 exp(−Ω(t2)) (9)

Pr[|⟨v∗, g⟩| > t] ⩽ 2 exp(−Ω(t2)) . (10)

For the next few questions, we will consider the following result:

Theorem 3.1 (Berry-Esseen). Let X1, . . . , Xn be i.i.d. random variables satisfying E[Xi] = 0, E[X2
i ] = 1, and E[|Xi|3] = ρ < ∞

for all i. If we define Y ≜ 1√
n

∑n
i=1 Xi, then the Kolmogorov distance between the standard normal distribution N (0, 1) and the

distribution over Y and is at most ρ
2
√
n
.

3.C. (3 pts.) Using Theorem 3.1, prove a bound on the Kolmogorov distance between the distributions over ⟨v∗, x⟩ and ⟨v∗, g⟩.
3.D. (6 pts.*) Using the result of 3.C., give a proof that for all sufficiently large even d,(

d

d/2

)
= Θ

( 2d√
d

)
. (11)

3.E. (3 pts.) Among the results established in 3.A., 3.B., 3.C., which ones generalize when v∗ is replaced with an arbitrary unit
vector, and why?

Solution:
3.A.

3.B.

3.C.

3.D.

3.E.
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