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Lecture 8: SoS for Tensor Decomposition
(Conclusion)

Overview

• Recap SoS for noisy orthogonal tensor decomposition.

• Extension of noisy-orthogonal algorithm to over-complete setting for tensor
decomposition.

• Overview of last few lectures on Sum-of-Squares methods.

Noisy Orthogonal Tensor Decomposition

We return to the problem of computing the orthogonal components of an order-3
tensor subject to some noise. As we shall see, for noise “small enough”, this can be
done using a SoS-based algorithm. Suppose we have a tensor of the form

T =
d∑

i=1

u⊗3
i + E

for orthonormal u1, . . . , uk and error tensor E. Recall from Lecture 7 that for “small
enough” error E, namely∥E∥SOS6 = o(1), then we can recover the components ui.

Algorithm 1: NOISY ORTHOGONAL TENSOR DECOMPOSITION

Input: Noisy tensor T as above with orthogonal components ui.
Output: Components ui of T .

1 Maximise Ẽ⟨T, x⊗3⟩ over degree-6 pseudo expectations subject to the
high-entropy constraints for∥x∥ = 1.

2 Let T̃ = Ẽ[x⊗4].
3 Apply JENNRICH’S to T̃ repeatedly, i.e. computing the top eigenvector of

T̃ (g, :, :) = Ẽ[⟨g, x⊗ x⟩xxT ] for poly(d) many Gaussian samples
g ∼ N (0, Id).

The main result of today’s lecture will be to prove the correctness of Algorithm 1 for
this task. We will rely on the previously defined notion of high-entropy constraints
of a pseudodistribution.
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Definition 1. Ẽ has high entropy if ∥∥∥Ẽ[xxT ]
∥∥∥

op
≤ 1/d∥∥∥Ẽ[(x⊗ x)(x⊗ x)T ]

∥∥∥
op
≤ 1/d∥∥∥Ẽ[(x⊗ x⊗ x)(x⊗ x⊗ x)T ]

∥∥∥
op
≤ 1/d

This makes sense since recall that the Frobenius norm of Ẽ is inversely related to entropy.

Why does STEP 3 in Algorithm 1 work? This will be proved by the following
Theorem 1:

Theorem 1. For any optimal pseudoexpectation Ẽ and some vector a ∈ Rd highly correlated
with Ẽ (i.e. Ẽ[⟨a, x⟩4] ≥ 1

d
(1 − o(1)), then with probability at least 1/poly(d) the top

eigenvector v of Ẽ[⟨g, x⊗ x⟩xxT ] satisfies ⟨a, v⟩2 ≥ 0.99 for random g ≈ N (0, Id).

Remark Note that the optimality of Ẽ will be satisfied by STEP 1 of the algorithm.
Further, the importance of this theorem is that we can then successively sample g

and have a good probability of finding the components ui of the tensor T regardless
of error, so long as the optimised pseudoexpectation is highly correlated with the
target components ui of our tensor. Why should this be true?

Lemma 1. For any optimal Ẽ, for 1− o(1) fraction of i ∈ [d], have

Ẽ[⟨ui, x⟩4] ≥
1

d
(1− o(1)).

We are now in a position to prove Theorem 1.

Proof. Setup Recall we set up a ∈ Sd−1 with Ẽ[⟨a, x⟩4] ≥ (1−o(1))/d and g ∼ N (0, Id),
and we aim to better understand and bound the moment

Mg ≡ Ẽ[⟨g, x⊗ x⟩xxT ].

Decompose g as
g = γa⊗ a+ γ⊥

for one-dimensional Gaussian γ ∼ N (0, I). Note that this forces γ⊥ to be distributed
according to ∼ N (0, I− (a⊗ a)(a⊗ a)T ).

Big Picture We see now that

Mg = γMa⊗a +Mγ⊥ .
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We can think of γ as a gaussian in the direction spanned by a⊗a and so Mγ⊥ should
not contain too much information relating to a. Said another way, we can think of
γMa⊗a as a signal moment, which we wish to bound by aaT/d; and Mγ⊥ as a noise
moment, which we wish to bound by ≈

√
log d/d. As long as γ is reasonably larger

than
√
log d, then the signal moment will dominate over the noise term. In this

case, we would then have Mg ≈ aaT/d, giving precisely a as the top eigenvector, as
desired. How often is γ is large enough, i.e. what is P(|γ| >

√
log d)? This can be

bounded approximately by some 1/poly(d) expression, giving us the guarantee of
the theorem.

Signal Bound Recall our claim is that Ma⊗a = aaT/d + some term with o(1/d) operator
norm. Thus analyse the components of Ma⊗a, i.e. vTMa⊗av for∥v∥ = 1 gives projection of
Ma⊗a along v. We have

aTMa⊗aa = aT Ẽ[⟨a⊗ a, x⊗ x⟩xxT ]a

= Ẽ[⟨a, x⟩4]

≥ 1

d
(1− o(1))

by high correlation condition. To consider the non-a components of Ma⊗a, take
b ∈ Sd−1 such that b ⊥ a and consider

bTMa⊗ab = Ẽ[⟨a⊗ a, x⊗ x⟩bTxxT b]

= Ẽ[⟨a, x⟩2⟨b, x⟩2]
≤ Ẽ[⟨a, x⟩2(1− ⟨a, x⟩)2] since a, b orthonormal and∥x∥ = 1 so ⟨a, x⟩2 + ⟨b, x⟩2 ≤ 1

= Ẽ[⟨a, x⟩2]− Ẽ[⟨a, x⟩4]

≤ aT Ẽ[xxT ]a− 1

d
(1− o(1)) by the high correlation condition

≤
∥∥∥Ẽ[xxT ]

∥∥∥
op

− 1

d
(1− o(1))

≤ o(1/d) by the high entropy condition on
∥∥∥Ẽ[xxT ]

∥∥∥
op

.

This analysis is not technically complete has we have not computed aTMa⊗ab or bTMa⊗aa

terms, but we can be sure these are small since Ma⊗a is positive definite, so terms of the
form aTMa⊗ab or bTMa⊗aa must be bounded by

√
(aTMa)(bTMb) ≤

√
(1/d)o(1/d) since

aTMa ≤ 1/d. sqrt(1/d)o(1/d) is negligible compared to 1/d and so aTMa is still domi-
nant.
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Noise Bound γ⊥ has a weird covariance (as γ⊥ ∼ N (0, I− (a⊗ a)(a⊗ a)T ). We can
make this nicer to work with if we take g′ ∼ N (0, (a⊗ a)(a⊗ a)T ) and

g1 = γ⊥ − g′

g2 = γ⊥ + g′

so that γ⊥ = (g1 + g2)/2 with g1, g2 ∼ N (0, I) (although g1, g2 are very much not
independent). Then

Mg⊥ =
1

2
Mg1 +

1

2
Mg2 .

Recall we wish to show that
∥∥Mγ⊥

∥∥
op ≤

√
log d/d so for h ∼ N (0, I) it suffices to show

that
∥∥∥Ẽ[⟨h, x⊗ x⟩xxT ]

∥∥∥
op
≤

√
log d/d.

∥Mh∥op =

∥∥∥∥∥∥
∑
ij

hijAij

∥∥∥∥∥∥
op

for Aij = Ẽ[xixjxx
T ] as ⟨h, x⊗ x⟩ =

∑
ij

hijxixj

≤

∥∥∥∥∥∥
∑
ij

A2
ij

∥∥∥∥∥∥
1/2

op

√
log d concentration inequality [Tro15, Thm. 4.1.1]

=
∥∥∥BBT

∥∥∥1/2

op

√
log d

where we define B ∈ Rd·d3 by Bijkℓ = Ẽ[xixjxkxℓ], so that∑
ij

A2
ij


ab

=
∑
c

∑
ij

Ẽ[xixjxaxc]Ẽ[xixjxcxb]

=
∑
c

∑
ij

BaijcBbijc

≡ (BBT )ab.

Now we can bound
∥∥BBT

∥∥1/2

op =∥B∥op as

∥B∥op = supz∈Sd,z′∈Sd3−1

∣∣∣zTBz′
∣∣∣

= sup Ẽ[⟨z, x⟩⟨z′, x⊗3⟩]
≤ Ẽ[⟨z, x⟩2]1/2Ẽ[⟨z, x⟩6]1/2 by Cauchy-Schwartz

=
∣∣∣zT Ẽ[xxT ]z

∣∣∣1/2∣∣∣z′Ẽ[x⊗3(x⊗3)T ]zT
∣∣∣1 /2

≤ 1√
d

1√
d

by the high-entropy condition.

Finally we are done.
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Overcomplete Tensors

Now we see how this idea can also be used for the case where we wish to decompose
a noiseless, overcomplete (k >> d) tensor

T =
k∑

i=1

u⊗3
i

for u1, · · · , uk ∈ Sd−1 so long as we have k << d3/2.

Remark We can notice that a high-level takeaway from the above proof of Theorem 1 is
that it relied on the compatibility of the high-entropy condition and the high-correlation
condition, i.e. in the noisy orthogonal case, we have∥∥∥Ẽ[xxT ]

∥∥∥
op
≤ 1

d
high entropy

Ẽ[⟨a, x⟩4] ≥ (1− o(1))
1

d
high correlation

In the previous section, it was important that both inequalities depend on 1/d. Recall that
we needed to bound b⊤Ma⊗ab for b ⊥ a and we got:

b⊤Ma⊗ab ≤
∥∥∥Ẽ[xxT ]

∥∥∥
op
− Ẽ[⟨a, x⟩4].

We shall see that this breaks for overcomplete tensors as follows.

Consider a pseudodistribution Ẽ uniform over {u1, · · · , uk} and take a = ui. Then
we have correlation

Ẽ[⟨a, x⟩4] = 1

k

k∑
j=1

⟨ui, uj⟩4 =
1

k

1 +
∑
j:j ̸=i

⟨ui, uj⟩4
 ≈ 1

k
(1 +O(k/d2)) =

1

k
(1 + o(1))

where we have used that, for i ̸= j, ⟨ui, uj⟩4 ≈ (1/
√
d)4 = 1/d2. On the other hand,

we have entropy

Ẽ[xxT ] =
1

k

k∑
j=1

uiu
⊤
i ≈ 1

d
Id

since, for k >> d, we are effectively computing a sample variance of a uniform
distribution on Sd−1. Therefore,∥∥∥Ẽ[xxT ]

∥∥∥
op

≈ 1

d
>>

1

k
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Intuitively, the issue here is that there are too few dimensions, so the ui’s have
tiny but non-negligible correlations. This implies that

∥∥∥Ẽ[xxT ]
∥∥∥

op
cannot be small

enough for the previous argument to go through.

Big Picture Lift to higher dimensions. Suppose that instead of T =
∑k

i=1 u
⊗3
i we had

the tensor

T ′ =
k∑

i=1

u⊗6
i =

k∑
i=1

(
u⊗2
i

)⊗3
.

Now we have that {wi ≜ u⊗2
i }i=1,...,k are k << d

3
2 “random” vectors in d2 dimen-

sions. The idea is that we would like to use Algorithm 1 replacing x everywhere
with x⊗ x. But there are some details that should be taken into consideration.

Entropy To be more precise, it turns out that
∑

i wiw
⊤
i and Id2 may differ significantly

for some bad directions. However, we can choose an appropriate projection that
deals with this problem. Let Π be the projection operator to the symmetric subspace
spanned by the flattening of tensors of the form u⊗2, see [HSSS16, Section C.0.4] for
more details. If we use wi = Π(u⊗2

i ) we obtain the following result.

Claim 1. If k << d2, then ∥∥∥∥∥∥1k
∑
i

wiw
⊤
i

∥∥∥∥∥∥
op

=
1

k
(1 + o(1))

The proof is again based on a concentration inequality, that needs some notion of
incoherence. The idea is that, as long as d is sufficiently large, this incoherence
parameter is bounded and we can apply the concentration inequality. Intuitively
this relies on the fact that for a “small” number of vectors sampled from a high-
dimensional space, they are effectively orthogonal, i.e. their inner products can be
bounded. For more details, see [Ver18, Theorem 5.62].

Correlation The only thing that remains to be proved is the correlation lower bound

Claim 2. For optimal Ẽ, with high probability over the ui’s,

Ẽ
[
⟨wi, x

⊗2⟩4
]
≥ 1− o(1)

so, by the averaging argument from last time, for 1− o(1) fraction of the i’s we have

Ẽ⟨wi, x
⊗2⟩ ≥ 1

k
(1− o(1)).
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Note Have
Ẽ
[
⟨wi, x

⊗2⟩4
]
= Ẽ

[
⟨ui, x⟩8

]
.

We will prove a “baby version” of Claim 2 for intuition, as follows.

Claim 3.
Ẽ
[
⟨ui, x⟩4

]
= 1− o(1).

Proof. Setup We will give a low-degree SoS proof starting from
∑

i⟨ui, x⟩3 ≥ 1− o(1).
Using Cauchy-Schwarz we have∑

i

⟨ui, x⟩3
2

=
〈∑

i

⟨ui, x⟩2ui, x
〉2

≤

∥∥∥∥∥∥
∑
i

⟨ui, x⟩2ui

∥∥∥∥∥∥
2

∥x∥2 .

Note that∥x∥ = 1 and, using that∥ui∥ = 1, we obtain∥∥∥∥∥∥
∑
i

⟨ui, x⟩2ui

∥∥∥∥∥∥
2

=
∑
i

⟨ui, x⟩4∥ui∥2 +
∑
i ̸=j

⟨ui, x⟩2⟨uj, x⟩2⟨ui, uj⟩

=
∑
i

⟨ui, x⟩4 +
∑
i ̸=j

⟨ui, x⟩2⟨uj, x⟩2⟨ui, uj⟩

Therefore, ∑
i

⟨ui, x⟩4 ≥
∑
i

⟨ui, x⟩3 −
∑
i ̸=j

⟨ui, x⟩2⟨uj, x⟩2⟨ui, uj⟩.

So it suffices to bound∥∥∥∥∥∥
∑
i ̸=j

⟨ui, uj⟩(ui ⊗ uj)(ui ⊗ uj)
⊤

∥∥∥∥∥∥
op

= o(1).

A Lazy Bound Let M ∈ Rd2×(k2) have columns consisting of ui ⊗ uj’s. We can bound
its operator norm and obtain that∥∥∥∥∥∥

∑
i ̸=j

⟨ui, uj⟩(ui ⊗ uj)(ui ⊗ uj)
⊤

∥∥∥∥∥∥
op

=
∥∥∥Mdiag({⟨ui, uj⟩}i ̸=j)M

⊤
∥∥∥

op
≤ k2

d5/2

which is o(1) if k << d5/4.
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Remark Nevertheless, PSET2 Question #3, gives a proof of the “right” bound, i.e. getting
k << d3/2.

We are now finally in a position to construct an algorithm for overcomplete tensor
decomposition given the results above. As mentioned before, the idea is to use
Algorithm 1 replacing x by Π(x⊗x) in the high entropy constraints and run Jenrich’s
algorithm many times on

T̃ ≜ Ẽ
[
Π(x⊗ x)⊗4

]
.

See Algorithm 2 for the details.

Algorithm 2: SOS FOR TENSOR LIFTING

Input: Overcomplete tensor T as above with k components ui ∈ Sd−1 for
d << k << d3/2.

Output: Components ui of T .
1 Let L(u) = Π(u⊗ u) be the lifting map. Connect this with previous notation

wi = L(ui) used above.
2 Solve maxẼẼ[⟨T, x⊗3⟩] over degree-12 pseudoexpectations Ẽ such that

• Ẽ satisfies∥x∥2 = 1.
•
∥∥∥Ẽ[L(x)L(x)T ]∥∥∥

op
≤ 1

k
(1 + o(1).

•
∥∥∥Ẽ[(L(x)⊗ L(x))(L(x)⊗ L(x))T ]

∥∥∥
op

≤ 1
k
(1 + o(1).

•
∥∥∥Ẽ[(L(x)⊗3)(L(x)⊗3)T ]

∥∥∥
op

≤ 1
k
(1 + o(1).

3 Define lifted tensor T̃ = Ẽ[L(x)⊗4]

4 Run JENNRICH’S to T̃ repeatedly, i.e. computing the top eigenvector of
T̃ (g, :, :) = Ẽ[⟨g, L(x)⊗ L(x)⟩L(x)L(x)T ] for poly(d2) many Gaussian
samples g ∈ Rd4 . This step gives ≈ k vectors L(x) ∈ Rd2 .

5 Reshape L(x) solutions above from 1xd2 vector to dxd matrix and take top
eigenvector to give ui.
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SoS Retrospective

We have seen applications of SoS to

• Robust mean estimation

• Robust regression [KKM20]

• Learning mixtures of Gaussians down to the optimal separation threshold
[KS17, HL17]

– More efficient algorithm that only implicitly works with moment tensor
[LL21]

• Tensor decomposition with maximal noise [GM17, MSS16, SS17]

• Overcomplete tensor decomposition with (conjectured) optimal number of
components [GM17, MSS16, HSSS16, DdL+22]

– Fast spectral algorithms “inspired” by SoS [HSSS16, DdL+22]

Takeaway - signatures of tractibility: For robustness or clusters, things are uniquely
identified in moment bounds through sum-of-squares. For tensor algorithms, with
non-convex optimisation landscape benign without noise, then controlled noise
can’t mess things up too much according to SoS.

Next Steps SoS algorithms are provably correct but are “first-pass” alghorithms, i.e.
are often not practical or computationally tractable. We will see further examples of
more efficient algorithms for the above tasks in later lectures. However, it is good
to keep in mind the theoretical takeaways and signatures of tractibility as intuition
that we gained from SoS techniques.
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