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Lecture 7: Sum-of-squares Application: Tensor
Decomposition

1 Continuation of Lecture 6

Recall from last lecture we want to learn a mixture of Gaussians. [HL18|, KS17]. We
have d-dimensional samples

T1,...,T, ~ (¢, Where ¢:=

| =

k
ZN(,U]', [dd)
j=1

In order to learn the centers 1; of these Gaussians, we designed a sum of square
(S0S) program. See [Hop18]l for a collection of blog posts on the SoS method. This
program is designed to simulate the inefficient algorithm of brute-force constructing
subsets S of appropriate size N = n/k to find some subset of the data that “looks
like” a Gaussian.

Set up our SoS program:
* Variables:
A1y« vy Qp, b

where a; = 1 if we believe point i came from the component and 0 otherwise;
(i is our final estimate for what the mean of that component is.

We also define the following quantity:

. |Sﬂ5j‘ Ziesjai
TN TN

€ [0,1] (1)

this can be interpreted as the (normalized) overlap between S, the set of points
we found, and S}, the set of points in the jth component. Notice that ¢; = 1
means we have learned the component perfectly.

¢ Constraints:

- a? = a; (ensures a;s are just Boolean indicator variables)

- > ;a; = N (ensures we select exactly N = 7 points for the component estimate)
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- K= % Z?:1 AiT;

- % Zizl ai<mi - M7u>t S Qtt/2a Vu
Notice that the last constraint says, for the points I picked out, if I look at
the projection in any direction u, the empirical tth moment of the data I

picked out, should look like the empirical ¢{th moment of a Gaussian (i.e.,

/\]%o )[gt] = (t — 1)! < #*/2), namely it should have the above bound)
g 1

* Objective (Max Entropy):

min|[Elaa]||r
E

we want to minimize over pseudo-distributions over solutions to this polyno-
mial system where a = (a4, .., a,).

Recall in the last lecture, under sum of squares, we showed that:

k
d d>1-o0(1)
j=1

In addition, we know that ) ¢; = 1. Using these the fact that ) | ¢; = 1 and the sum
of squares of ¢;s are close to 1, which implies one of the ¢;s is close to 1.

1.1 Motivation for Max Entropy

First Example: Let’s pretend that E is actually a real distribution — in fact, a
deterministic distribution:

a; = [[z; came from component j] (2)

Then
Elaa'] = aa’

For example, suppose a = (1,0, 1,0,0, 1), then:

aa =

_ o O = O =
O O O O o O
_ o O = O =
O O O o o o
O O O o o o
_ o O = O =

Since a can only pick out NV points, this will be an N x N submatrix of 1’s.

— |[Efaa]|} = N
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Second Example: Pretend E is actually a real distribution, but there is some
randomness. Indeed, we'll sample j ~ [k]| and keep the definition of a; above in
Equation Let agj ) = [[z; came from component j].

J
v~ v~

j=1 j=2

This will result in a matrix with N x N blocks with only 1/k values, where this
matrix tells us if any 2 points 4, 7’ are in the same cluster.

After permutation, we obtain a block-diagonal matrix that shows incidence of
points in each component. We get:

~ 1 NQ
[Blaa It = - N* - = =
1.2 Lemma to Motivate Algorithm

Lemma 1. For E optimizing the SoS program:

IEjaa’] — E;[aY (@))% is small.

Proof. Let M = E[aa"] and M = E;[a®) (a))T]

IM = M| = [|M||% + [ M]3 — 2(M, M)
NZ
< |IMI[F + == = 2(M, M)
=2 _2M, M)

Now notice,

(M, M) = (Elaa"], E;[a¥(a?)T])

= EE;[(a,a")?]
and recall from Equation



Plugging in E;[(a,a?))?] = L 3% (N¢;)?:

J=1
2 Kk 2
_ N
_ E 2 _
= ?E - C]- = ?(1 — 0(1))

~ 2N?
— ||M - M|} < To(l) which is sufficiently small.

1.3 Algorithm

1. Solve for E (run optimization problem).

2. Compute Efaa"].
3. Read off the clustering structure from Elaa"]
cluster 7).

(i.e., which points are in the same

4. Compute empirical means of the clusters we have found.

2 SoS for Tensor Decomposition

In the first unit of this class, we tackled the problem of decomposing a tensor into
the sum of rank-1 tensors. We’ll consider here the same problem, albeit when the
tensor we have access to is a highly noisy version of the true tensor.

Indeed, we'll suppose the following setting. Let uy, .. ., u;, € R? be orthonormal
vectors. We have access to a tensor

~—~
i=1 noise
~——

signal

where F is a noise tensor.



2.1 Aside: How do we quantify the “size” of a tensor?

Consider the following two norms, analogous to the Frobenius and operator norms

over linear operators:
ITlle = [>T
ijk

|7]|inj = max (T, x®3)
[lz[|=1

¢ The Frobenius norm:

* The injective tensor norm:

for symmetric tensor 7'. Note that there is no need for an absolute value within
the maximum, since we may just as well take x to be —z. However, this norm
is NP-hard to compute — even approximately to within a factor of n°®.

There exists a convenient relationship between these two norms:
Lemma 2. [Tl = |7

Proof. We'll employ a degree-6 SoS proof (since the terms involve polynomials of
degree at most 6). For any = € R?,

(T, x®3>2 = Zﬂjkxixjxk

i7j7k

< T2 | - | D afa?2} | (Cauchy-Schwarz)
4,5,k i3,k
= (2T | 1 =171
irjk
Taking the supremum over the left-hand side shows that HTH]Qn] < ||T||%. O

Consider a third, computationally tractable norm that interpolates between the
Frobenius and injective tensor norms:

e The SoS norm:

1T || s0s, = maxE[(T,2%%)] fort > 6 even
E



where E ranges over deg-t pseudo-expectations over the variable z satisfying
|z||? = 1. Notice this norm is computationally tractable via a d°® algorithm
— namely, by setting up a semi-definite program and running the ellipsoid
method.

Claim 1. As the degree t approaches infinity along the even numbers, the degree-t SoS
norm is monotonically decreasing and approaches the injective tensor norm:

1T 505 0 (1T [in-
Additionally, the Frobenius norm is at least the degree-6 SoS norm:

1Tz = NIT]soss-

2.2 Q: How big does the noise £ have to be before Jennrich’s
breaks?

When the scale of the noise is on the order of 1/d° or smaller for sufficiently large

¢, Jennrich’s algorithm succeeds. If c is too small, however, the scale of the noise

dominates that of the signal, and Jennrich’s cannot discern between the two.
Indeed, consider the setting in which

Ez’jk ~ N (0, d_2+6) 5

forany € > 0. Here,c =1 —¢/2 < 1.
Recall that in Jennrich’s algorithm, we consider a pair of contractions of the
tensor 7" of the following sort:

e Sample g ~ N (0, I;)

* Contract to get matrix

M,=1T(g,:,:) = Z(g, uuiu; + E(g,:,:)

Every entry of E(g,:,:) = 3.¢_, gxEj. is of the form

E(g,:,3)ij = ngEkij-
p

Conditioning on FE, every entry has distribution A'(0, Y, E7;;). The variance term
concentrates to d/d* ¢ = d~'*< with sufficiently large dimension d, so we make
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the approximation that E(g,:,:);; ~ N(0,d ). Using the fact that with high
probability
1Glop ~ Vd

where G is a random matrix with i.i.d. standard normal random variables, we
obtain the high-probability lower bound

1
||E(ga:>:)||0p%\/a' F:deﬂ >> 1.

In contrast, the scale of the signal is O(1). Indeed, we have that (g, ux) ~ N (0, 1)
has scale 1 for each k. Since the matrices u,u, are mutually orthogonal,

| Z<g>uk>uku;—”0p = max|(g, ux)| = 24/logd.
k

ke(d]

For sufficiently large d, it follows that the scale of the noise of M, far exceeds the
scale of the O(y/log d) signal.

Claim 2. With high probability,
INV(0,0%) > 505, < od®* - polylog(d)

In the noise setting defined above with ¢ = 0.1, we use this claim to obtain
|Ellsoss < d%% « 1. We will show that as long as ||E||s.s, << 1, there is an
algorithm to recover uy, .. ., ug4.

2.3 Problem Setup

Let’s make this claim more concrete. Again, we have access to

d
T=> u+E,

=1

where the u;’s are orthonormal and the size of the norm is at most || E|| 505, = 0(1)
(norm is vanishing).
Consider the polynomial

d

pe(x) = Z(m,uiy.

=1

Goal: Our objective will be to maximize ps.



2.4 Algorithm Attempt 1

This algorithm does not work, but introduces helpful ideas.

Define our SoS program to be:

e Variables:

¢ Constraints:
]|* =1

¢ Obijective: N
max E(T, 2%?)

E
Lemma 3.

E[ps(z)] > 1 —o(1).
Proof. Consider the real distribution uniform over {u, ..., uq}, and call it E[-]. This
is the ideal distribution because if we have acess to E[-|, we can just sample from
this distribution to obtain the factors {uy, ..., ug}.

Elps(2)] = Ejujg Z(Uz,@?’]

%

d

SN

7j=1 %

Z<ui> uj>3)

-d=1.

S

This makes sense because the true components should be able to maximize p;.
Now looking at our noisy objective:

E[(T,z%°)] > E[(T, 2%°)]
— Elpy(x)] + E[(E,2%%)] > 1 - o(1),
where we have used that
|E] = o(1).

Now, ) ) )
= Elps(2)] = E[(T,2%°)] - E[(E,2%)] <1 —0(1)



Lemma 4. The optimal choice of E also satisfies Elpy(z)] > 1 — o(1).
Proof.

1—-0(1) <

(using “pseudo-expectation Cauchy-Schwarz.”)

=E (Z(uz,x)3>

In the second line, “pseudo-expectation Cauchy-Schwarz.” is E[p-¢] < E[p?]"/*E[¢?]
Now focusing on (3, (u;, 2)%)?, in degree-6 SoS:

(Z<ui»$>3) - (Z(%:@ ' <Ui»9€>2>

< (Z(ul,x>2) : (Z(ui,x>4) (using Cauchy-Schwarz)

1/2.

=1- Z(ui,x>4 = py(x)

i

2.5 How do we “round” the pseudo-distribution to a solution?

Ideal: What if we used Jennrich’s on the degree-3 object E[2#%]?

There’s an issue here. Suppose E is an actual distribution that places \/% mass on

1-1/Vd
d d

an asbitrary unit vector w L uy, ..., ug an ~ 1/d mass on each of uy, ..., ug.

T e = LYV S S

has contraction

T(g,,:) = # S g + %@, wyw®?

)



The second term outweighs the first (important) one by a ratio of v/d, which means
the eigenvectors of T = E[+®3] are useless!

In a deeper sense, this distribution is problematic because it’s a very “low-
entropy” distribution — lots of weight placed on one vector w. If we had something
closer to the uniform distribution, this might work.

2.6 Algorithm Attempt 2

This time, the algorithm will work.
Consider the same SoS program as before in Section 2.4} but

max E(T, %)
E

over degree-6 pseudo-expectations E which:
1. Satisfy program constraints — that is, ||z|* = 1.

2. Have the max-entropy properties

~ 1
||E[$IT]||OP < E

1

IBle ® )@@ ) Jlop <

Indeed, note that if [ is uniform over the directions Uy, ..., uq, then

~ 1 1

Claim: If we run Jennrich’s on E[z®3] for pseudo-distributions optimizing this
new program, we will recover almost all the components.

Lemma 5. For this optimal E, for 1 — o(1) fraction of i € |d],

4 1
Bl(ui,2)') > 5 - (1= o(1)).

Proof. Suppose for sake of contradiction that for ¢ = (1) fraction of i’s we have

~ 1—0
E(u;, x)* < —

By averaging, for some other i, we have

Eug, z)* >

SN
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However, notice that:

E{u;, 2)* = (u; ® uz)TE[(x @) (r®z) (4 ® u)
= |[(w @ w) E[(z®2)(z @ 2) |(u; ® Ui)||op
< (s @ ) T [lop|El(z @ 2) (2 ® 2) llopll (w0 @ 13)|op
~ Bl ® )@@ n) Ty < 5

And we have a contradiction on E(u;, z)*. O

(by the high entropy constraint)
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