
CS 224 Fall 2023 Scribes: Sabarish Sainathan, Anna Trella
27 September 2023

Lecture 7: Sum-of-squares Application: Tensor
Decomposition

1 Continuation of Lecture 6

Recall from last lecture we want to learn a mixture of Gaussians. [HL18, KS17]. We
have d-dimensional samples

x1, . . . , xn ∼ q, where q :=
1

k

k∑
j=1

N (µj, Idd).

In order to learn the centers µj of these Gaussians, we designed a sum of square
(SoS) program. See [Hop18] for a collection of blog posts on the SoS method. This
program is designed to simulate the inefficient algorithm of brute-force constructing
subsets S of appropriate size N = n/k to find some subset of the data that “looks
like“ a Gaussian.

Set up our SoS program:

• Variables:
a1, . . . , an, µ

where ai = 1 if we believe point i came from the component and 0 otherwise;
µ is our final estimate for what the mean of that component is.

We also define the following quantity:

cj :=
|S ∩ Sj|

N
=

∑
i∈Sj

ai

N
∈ [0, 1] (1)

this can be interpreted as the (normalized) overlap between S, the set of points
we found, and Sj , the set of points in the jth component. Notice that cj = 1

means we have learned the component perfectly.

• Constraints:

– a2i = ai (ensures ais are just Boolean indicator variables)

–
∑

i ai = N (ensures we select exactly N = n
k

points for the component estimate)

1

– µ = 1
N

∑n
i=1 aixi

– 1
N

∑
i=1 ai⟨xi − µ, u⟩t ≤ 2tt/2, ∀u

Notice that the last constraint says, for the points I picked out, if I look at
the projection in any direction u, the empirical tth moment of the data I
picked out, should look like the empirical tth moment of a Gaussian (i.e.,

E
g∼N (0,1)

[gt] = (t− 1)! ≤ tt/2), namely it should have the above bound)

• Objective (Max Entropy):
min
Ẽ

∥Ẽ[aaT]∥F

we want to minimize over pseudo-distributions over solutions to this polyno-
mial system where a = (a1, .., an).

Recall in the last lecture, under sum of squares, we showed that:

k∑
j=1

c2j ≥ 1− o(1)

In addition, we know that
∑

cj = 1. Using these the fact that
∑

cj = 1 and the sum
of squares of cjs are close to 1, which implies one of the cjs is close to 1.

1.1 Motivation for Max Entropy

First Example: Let’s pretend that Ẽ is actually a real distribution — in fact, a
deterministic distribution:

ai = I[xi came from component j] (2)

Then
Ẽ[aa⊤] = aa⊤

For example, suppose a = (1, 0, 1, 0, 0, 1), then:

aaT =



1 0 1 0 0 1

0 0 0 0 0 0

1 0 1 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 0 1


Since a can only pick out N points, this will be an N ×N submatrix of 1’s.

=⇒ ∥Ẽ[aa⊤]∥2F = N2

2

Second Example: Pretend Ẽ is actually a real distribution, but there is some
randomness. Indeed, we’ll sample j ∼ [k] and keep the definition of ai above in
Equation 2. Let a(j)i = I[xi came from component j].

Ẽ[aa⊤] = Ej[a
(j)(a(j))⊤] =

1

k

[ · · ·


︸ ︷︷ ︸

j=1

+

 · · ·


︸ ︷︷ ︸

j=2

+ · · ·

]

This will result in a matrix with N ×N blocks with only 1/k values, where this
matrix tells us if any 2 points i, i′ are in the same cluster.

After permutation, we obtain a block-diagonal matrix that shows incidence of
points in each component. We get:

∥Ẽ[aa⊤]∥2F = k ·N2 · 1

k2
=

N2

k

1.2 Lemma to Motivate Algorithm

Lemma 1. For Ẽ optimizing the SoS program:

∥Ẽ[aa⊤]− Ej[a
(j)(a(j))⊤]∥2F is small.

Proof. Let M̃ = Ẽ[aa⊤] and M = Ej[a
(j)(a(j))⊤]

∥M̃ −M∥2F = ∥M̃∥2F + ∥M∥2F − 2⟨M̃,M⟩

≤ ∥M∥2F +
N2

k
− 2⟨M̃,M⟩

=
2N2

k
− 2⟨M̃,M⟩

Now notice,
⟨M̃,M⟩ = ⟨Ẽ[aa⊤],Ej[a

(j)(a(j))⊤]⟩

= ẼEj[⟨a, a(j)⟩2]

and recall from Equation 1,

⟨a, aj⟩ =
∑
i∈Sj

ai = N · cj

3

Plugging in Ej[⟨a, a(j)⟩2] = 1
k

∑k
j=1(Ncj)

2:

⟨M̃,M⟩ = Ẽ
1

k

k∑
j=1

(Ncj)
2

=
N2

k
Ẽ

k∑
j=1

c2j =
N2

k
(1− o(1))

=⇒ ∥M̃ −M∥2F ≤ 2N2

k
o(1) which is sufficiently small.

1.3 Algorithm

1. Solve for Ẽ (run optimization problem).

2. Compute Ẽ[aa⊤].

3. Read off the clustering structure from Ẽ[aa⊤] (i.e., which points are in the same
cluster j).

4. Compute empirical means of the clusters we have found.

2 SoS for Tensor Decomposition

In the first unit of this class, we tackled the problem of decomposing a tensor into
the sum of rank-1 tensors. We’ll consider here the same problem, albeit when the
tensor we have access to is a highly noisy version of the true tensor.

Indeed, we’ll suppose the following setting. Let u1, . . . , uk ∈ Rd be orthonormal
vectors. We have access to a tensor

T =
k∑

i=1

u⊗3
i︸ ︷︷ ︸

signal

+ E︸︷︷︸
noise

,

where E is a noise tensor.

4

2.1 Aside: How do we quantify the “size” of a tensor?

Consider the following two norms, analogous to the Frobenius and operator norms
over linear operators:

• The Frobenius norm:

∥T∥F =

√∑
i,j,k

T 2
ijk

• The injective tensor norm:

∥T∥inj = max
∥x∥=1

⟨T, x⊗3⟩

for symmetric tensor T . Note that there is no need for an absolute value within
the maximum, since we may just as well take x to be −x. However, this norm
is NP-hard to compute — even approximately to within a factor of no(1).

There exists a convenient relationship between these two norms:

Lemma 2. ∥T∥F ≥ ∥T∥inj

Proof. We’ll employ a degree-6 SoS proof (since the terms involve polynomials of
degree at most 6). For any x ∈ Rd,

⟨T, x⊗3⟩2 =

∑
i,j,k

Tijkxixjxk

2

≤

∑
i,j,k

T 2
ijk

 ·

∑
i,j,k

x2
ix

2
jx

2
k

 (Cauchy-Schwarz)

=

∑
i,j,k

T 2
ijk

 · 1 = ∥T∥2F

Taking the supremum over the left-hand side shows that ∥T∥2inj ≤ ∥T∥2F .

Consider a third, computationally tractable norm that interpolates between the
Frobenius and injective tensor norms:

• The SoS norm:

∥T∥SoSt = max
Ẽ

Ẽ[⟨T, x⊗3⟩] for t ≥ 6 even

5

where Ẽ ranges over deg-t pseudo-expectations over the variable x satisfying
∥x∥2 = 1. Notice this norm is computationally tractable via a dO(t) algorithm
— namely, by setting up a semi-definite program and running the ellipsoid
method.

Claim 1. As the degree t approaches infinity along the even numbers, the degree-t SoS
norm is monotonically decreasing and approaches the injective tensor norm:

∥T∥SoSt ↘ ∥T∥inj.

Additionally, the Frobenius norm is at least the degree-6 SoS norm:

∥T∥F ≥ ∥T∥SoS6 .

2.2 Q: How big does the noise E have to be before Jennrich’s
breaks?

When the scale of the noise is on the order of 1/dc or smaller for sufficiently large
c, Jennrich’s algorithm succeeds. If c is too small, however, the scale of the noise
dominates that of the signal, and Jennrich’s cannot discern between the two.

Indeed, consider the setting in which

Eijk ∼ N
(
0, d−2+ϵ

)
,

for any ϵ > 0. Here, c = 1− ϵ/2 < 1.
Recall that in Jennrich’s algorithm, we consider a pair of contractions of the

tensor T of the following sort:

• Sample g ∼ N (0, Id)

• Contract to get matrix

Mg = T (g, :, :) =
∑
i

⟨g, ui⟩uiu
⊤
i + E(g, :, :)

Every entry of E(g, :, :) =
∑d

k=1 gkEk:: is of the form

E(g, :, :)ij =
∑
k

gkEkij.

Conditioning on E, every entry has distribution N (0,
∑

k E
2
kij). The variance term

concentrates to d/d2−ϵ = d−1+ϵ with sufficiently large dimension d, so we make

6

the approximation that E(g, :, :)ij ∼ N (0, d−1+ϵ). Using the fact that with high
probability

∥G∥op ≈
√
d

where G is a random matrix with i.i.d. standard normal random variables, we
obtain the high-probability lower bound

∥E(g, :, :)∥op ≈
√
d ·

√
1

d1−ϵ
= dϵ/2 >> 1.

In contrast, the scale of the signal is O(1). Indeed, we have that ⟨g, uk⟩ ∼ N (0, 1)

has scale 1 for each k. Since the matrices uku
⊤
k are mutually orthogonal,

∥
∑
k

⟨g, uk⟩uku
⊤
k ∥op = max

k∈[d]
|⟨g, uk⟩| ≈ 2

√
log d.

For sufficiently large d, it follows that the scale of the noise of Mg far exceeds the
scale of the O(

√
log d) signal.

Claim 2. With high probability,

∥N (0, σ2)d×d×d∥SoS6 ≤ σd3/4 · polylog(d)

In the noise setting defined above with ϵ = 0.1, we use this claim to obtain
∥E∥SoS6 ≲ d−0.2 « 1. We will show that as long as ∥E∥SoS6 << 1, there is an
algorithm to recover u1, . . . , ud.

2.3 Problem Setup

Let’s make this claim more concrete. Again, we have access to

T =
d∑

i=1

u⊗3
i + E,

where the ui’s are orthonormal and the size of the norm is at most ∥E∥SoS6 = o(1)

(norm is vanishing).
Consider the polynomial

pℓ(x) =
d∑

i=1

⟨x, ui⟩ℓ.

Goal: Our objective will be to maximize p3.

7

2.4 Algorithm Attempt 1

This algorithm does not work, but introduces helpful ideas.

Define our SoS program to be:

• Variables:
x

• Constraints:
∥x∥2 = 1

• Objective:
max

Ẽ
Ẽ⟨T, x⊗3⟩

Lemma 3.
Ẽ[p3(x)] ≥ 1− o(1).

Proof. Consider the real distribution uniform over {u1, . . . , ud}, and call it E[·]. This
is the ideal distribution because if we have acess to E[·], we can just sample from
this distribution to obtain the factors {u1, . . . , ud}.

E[p3(x)] = Ej∼[d]

∑
i

⟨ui, x⟩3


=
1

d

d∑
j=1

∑
i

⟨ui, uj⟩3


=
1

d
· d = 1.

This makes sense because the true components should be able to maximize p3.
Now looking at our noisy objective:

Ẽ[⟨T, x⊗3⟩] ≥ E[⟨T, x⊗3⟩]
= E[p3(x)] + E[⟨E, x⊗3⟩] ≥ 1− o(1),

where we have used that
∥E∥ = o(1).

Now,
=⇒ Ẽ[p3(x)] = Ẽ[⟨T, x⊗3⟩]− Ẽ[⟨E, x⊗3⟩] ≤ 1− o(1)

8

Lemma 4. The optimal choice of Ẽ also satisfies Ẽ[p4(x)] ≥ 1− o(1).

Proof.

1− o(1) ≤ Ẽ[p3(x)]2

≤ Ẽ[p3(x)2] (using “pseudo-expectation Cauchy-Schwarz.”)

= Ẽ


∑

i

⟨ui, x⟩3
2


In the second line, “pseudo-expectation Cauchy-Schwarz.” is Ẽ[p·q] ≤ Ẽ[p2]1/2Ẽ[q2]1/2.

Now focusing on
(∑

i⟨ui, x⟩3
)2, in degree-6 SoS:∑

i

⟨ui, x⟩3
2

=

∑
i

⟨ui, x⟩ · ⟨ui, x⟩2
2

≤

∑
i

⟨ui, x⟩2
 ·

∑
i

⟨ui, x⟩4
 (using Cauchy-Schwarz)

= 1 ·
∑
i

⟨ui, x⟩4 = p4(x)

2.5 How do we “round” the pseudo-distribution to a solution?

Idea 1: What if we used Jennrich’s on the degree-3 object Ẽ[x⊗3]?

There’s an issue here. Suppose Ẽ is an actual distribution that places 1√
d

mass on

an asbitrary unit vector w ⊥ u1, . . . , ud and 1−1/
√
d

d
∼ 1/d mass on each of u1, . . . , ud.

T̃ = Ẽ[x⊗3] =
1− 1/

√
d

d

∑
i

u⊗3
i +

1√
d
w⊗3

has contraction

T̃ (g, :, :) =
1− 1/

√
d

d

∑
i

⟨g, ui⟩u⊗2
i +

1√
d
⟨g, w⟩w⊗2

9

The second term outweighs the first (important) one by a ratio of
√
d, which means

the eigenvectors of T̃ = Ẽ[x⊗3] are useless!
In a deeper sense, this distribution is problematic because it’s a very “low-

entropy” distribution — lots of weight placed on one vector w. If we had something
closer to the uniform distribution, this might work.

2.6 Algorithm Attempt 2

This time, the algorithm will work.
Consider the same SoS program as before in Section 2.4, but

max
Ẽ

Ẽ⟨T, x⊗3⟩

over degree-6 pseudo-expectations Ẽ which:

1. Satisfy program constraints — that is, ∥x∥2 = 1.

2. Have the max-entropy properties

∥Ẽ[xx⊤]∥op ≤ 1

d

∥Ẽ[(x⊗ x)(x⊗ x)⊤]∥op ≤ 1

d

Indeed, note that if Ẽ is uniform over the directions u1, . . . , ud, then

Ẽ[xx⊤] =
1

d

∑
i

uiu
⊤
i =

1

d
· Id.

Claim: If we run Jennrich’s on Ẽ[x⊗3] for pseudo-distributions optimizing this
new program, we will recover almost all the components.

Lemma 5. For this optimal Ẽ, for 1− o(1) fraction of i ∈ [d],

Ẽ[⟨ui, x⟩4] ≥
1

d
· (1− o(1)).

Proof. Suppose for sake of contradiction that for δ = Ω(1) fraction of i’s we have

Ẽ⟨ui, x⟩4 ≤
1− δ

d
.

By averaging, for some other i, we have

Ẽ⟨ui, x⟩4 >
1

d

10

However, notice that:

Ẽ⟨ui, x⟩4 = (ui ⊗ ui)
⊤Ẽ[(x⊗ x)(x⊗ x)⊤](ui ⊗ ui)

=⇒ ∥(ui ⊗ ui)
⊤Ẽ[(x⊗ x)(x⊗ x)⊤](ui ⊗ ui)∥op

≤ ∥(ui ⊗ ui)
⊤∥op∥Ẽ[(x⊗ x)(x⊗ x)⊤]∥op∥(ui ⊗ ui)∥op

= ∥Ẽ[(x⊗ x)(x⊗ x)⊤]∥op ≤
1

d
(by the high entropy constraint)

And we have a contradiction on Ẽ⟨ui, x⟩4.

References

[HL18] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of
squares proofs. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1021–1034, 2018.

[Hop18] Samuel B Hopkins. Clustering and sum of squares
proofs: Six blog posts on unsupervised learning, 2018.
https://www.samuelbhopkins.com/clustering.pdf.

[KS17] Pravesh K. Kothari and David Steurer. Outlier-robust moment-estimation
via sum-of-squares. CoRR, abs/1711.11581, 2017.

11

	Continuation of Lecture 6
	Motivation for Max Entropy
	Lemma to Motivate Algorithm
	Algorithm

	SoS for Tensor Decomposition
	Aside: How do we quantify the ``size'' of a tensor?
	Q: How big does the noise E have to be before Jennrich's breaks?
	Problem Setup
	Algorithm Attempt 1
	How do we ``round'' the pseudo-distribution to a solution?
	Algorithm Attempt 2

