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Lecture 4:
Smoothed Analysis and Overcomplete Tensors

We have previously seen how to use Jennrich’s algorithm to recover vectors
{ui, vi, wi} from a tensor

T ∈ Rd×d×d, T =
k∑

i=1

ui ⊗ vi ⊗ wi (1)

given that the {ui} are linearly independent, the {vi} are linearly independent,
d ≥ 2, and no two wi, wj are collinear (e.g. a scaled version of the other).1 However,
in the regime k > d, Jennrich’s algorithm is not guaranteed to recover all vectors
anymore. In today’s lecture, we are looking at how we can use higher order tensors
to handle k >> d by moving beyond worst-case analysis, and instead use smoothed
analysis.
Let’s have a look at one of the examples from previous lectures. We are given
samples from a mixture of Gaussians q =

∑k
i=1 λiN (µi, Id), where λi ∈ [0, 1] and∑

i λi = 1 (which means to sample from q, we sample from N (0, Id) with probability
λi). We have seen how to recover the λi and µi using various order tensors, such as
the third order tensor

Ex∼q[x
⊗3] =

∑
i

λiµ
⊗3
i +

∑
i

λiµi ⊗3 Id. (2)

However, given sample access to q, we can compute any order tensor given enough
compute. For example, we can compute

Ex∼q[x
⊗4] =

∑
i

λiµ
⊗4
i +

∑
i

λiµ
⊗2
i ⊗4 Id +

∑
i

λiE[g⊗4], (3)

where g ∼ N (0, Id). This raises the question if we can somehow leverage Jen-
nrich’s algorithm for higher order tensors. A naïve approach would be to contract
dimensions, e.g. for

T =
∑
i

λiui ⊗ ui ⊗ ui ⊗ ui ⊗ ui, (4)

1This algorithm also works for the more general case T ∈ Rd1×d2×d3 , in which case the assumption
becomes d3 ≥ 2.
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consider
T ′ =

∑
i

λivec(ui ⊗ ui)⊗ vec(ui ⊗ ui)⊗ ui (5)

as an object in Rd2×d2×2, and then apply Jennrich’s algorithm hoping that all
{vec(ui ⊗ ui)} are linearly independent. Since vec(ui ⊗ ui)} ∈ Rd2 , one could
hope that even for random ui, these vectors would be linearly independent for
k ∼ d2. However, it is possible to construct pathological counterexamples like the
following. Take k = 2d, and {u1, ..., u2d} = {a1, ..., ad, b1, ..., bd} for two orthonormal
bases {ai} and {bi}. Then∑

i

vec(ai ⊗ ai) = Id =
∑
i

vec(bi ⊗ bi), (6)

which shows that even for k linear in d, the ui can be linearly dependent. However,
in real world applications, the components of a tensor will rarely have a structure
as delicate as the union of two orthonormal bases. One approach to overcome such
pathological examples is average-case analysis, where inputs are completely random.
This, on the other hand, oftentimes does not resemble real-world applications either,
as inputs usually contain more structure than complete randomness. Smoothed
analysis, on the other hand, considers taking adversarial examples with added noise,
which more closely resembles real-world data and strikes a balance between com-
plete randomness and pure adversarial examples. One can think of the landscape of
hardness of a problem, over all possible problem parameters, to have relatively low
magnitude in most regions, but have a few narrow spikes, representing adversarial
problem initializations. Convolving such parameters with noise smooths out these
spikes. Hence, the hope is that with high probability over the added noise, the
problem is easy.

Smoothed analysis was introduced by Spielman and Teng in 2001 [ST03], where
it was used to show that while the Simplex algorithm provably takes exponential
time in certain adversarial cases, its smoothed complexity is polynomial. It has since
been applied to many algorithms, such as Gaussian elimination without pivoting
[SST05]; various other applications can be found in section 3 of [ST09].

The model we will consider looks as follows: Let ρ > 0 be a smoothing parameter,
k denote the number of components of the tensor, and l be the order of the tensor.
Then:

1. Arbitrary vectors {u′
i,j}i,j for i ∈ [k], j ∈ [l] are given

2. ui,j = u′
i,j +

ρ√
d
gi,j for gi,j ∼ N (0, Id) are the smoothed vectors

3. T =
∑k

i=1 ui,1 ⊗ ...⊗ ui,l is observed
4. Try to recover the ui,j
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Note that we will be dealing with independent perturbations gi,j here. However,
oftentimes it makes sense to consider dependent perturbations; consider the case
T =

∑
i u

⊗l
i . Since for fixed i, all ui,j are equal, we expect them to have the same

noise in practice. This setting has e.g. been explored in [BCPV19].
The following theorem leverages smooth analysis to show that with high prob-

ability over the randomness of the {gi,j}, we can recover the ui,j with Jennrich’s
algorithm:

Theorem 1 ([BCMV14]). With probability 1− 1
superpoly(d) over the randomness of the gi,j ,

Jennrich’s algorithm can recover the ui,j , given that

k ≤ 0.99d⌊
l−1
2

⌋. (7)

Here, superpoly(d) denotes growth faster than polynomial in d. Furthermore,
we assume that ρ ∼ 1

poly(d) , which is a common assumption made in practice. We
will not prove the theorem in full. However, we will prove a main ingredient
needed in the proof. To get an intuition why it’s needed, first consider T ′ as before
(for simplicity, we are considering the case l = 5 here):

T ′ =
∑
i

λivec(ui ⊗ ui)⊗ vec(ui ⊗ ui)⊗ ui (8)

Now for Jennrich’s algorithm to be applicable, we would need {vec(ui⊗vi)}i=1...k to
be linearly independent, as well as {vec(wi ⊗ xi)}i=1...k. However, since we are only
given noisy vectors, we require them to be robustly linearly independent instead,
in the sense of singular values. To this end, define the Khatri-Rao product of U and
V , which are the matrices with columns equal to ui and vi resp., as

W = U ⊙ V :=
[
vec(u1 ⊗ v1) . . .vec(uk ⊗ vk)

]
∈ Rd2×k. (9)

Then robust linear independence of the {vec(ui ⊗ vi)}i=1...k translates to lower
bounding the smallest singular value of W .

Some of the important concepts of the following proof can e.g. also be found in
[Vij20].

Theorem 2 ([BCMV14, ADM+18]). Let l = 5.2 We consider the same setting as before;
in particular, assume that

k ≤ 0.99d⌊
l−1
2

⌋ = 0.99d2. (10)

Then with probability at least 1− k exp(−Ω(d)) over the smoothing,

σmin(U ⊙ V ) ≥ Ω(ρ2/d2). (11)
2The theorem also holds for the general case, but we only consider the case l = 5 for simplicity.
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Proof. Throughout the proof, we will oftentimes make statements that are to be
understood as “with high probability over the smoothing”, which we will not
always explicitly mention. The matrices we observe are

Ũ := U +
ρ√
δ
N (0, 1)d×k, (12)

i.e. every entry in U is perturbed by some Gaussian noise, and likewise

Ṽ := U +
ρ√
δ
N (0, 1)d×k. (13)

Note that for the proof, we change notation, and what was previously U is now Ũ

to emphasize that it’s a noisy matrix.
Instead of the minimal singular value, we will consider the leave-on-out distance

as a proxy, which is easier to manage. For a matrix M ∈ Rn×k, it is defined as

l(M) := min
i

∥∥∥Π⊥
i Mi

∥∥∥ , (14)

where Mi is the ith column of M , and Π⊥
i is the projector to the orthogonal com-

plement of the subspace span(M1,M2, ...,Mi−1,Mi+1, ...,Mk). Hence, l(M) is a mea-
sure of how far away a given column of M is from the space spanned by all other
columns, minimized over all i. The following lemma motivates the use of the
leave-one-out distance:

For any matrix M ∈ Rn×k, it holds σmin(M) ≥ 1√
k
l(M).

Proof. For any vector u ∈ Rk, we have (with S := span(M2, ...,Mk)):

l(M) ≤
∥∥∥Π⊥

1 M1

∥∥∥ (15)

= min
v∈S

∥M1 − v∥ (16)

= min
λ

∥∥∥∥∥∥M1 −
∑
j>1

λjMj

∥∥∥∥∥∥ (17)

≤

∥∥∥∥∥∥M1 +
∑
j>1

uj

u1

Mj

∥∥∥∥∥∥ (18)

=
1

|u1|

∥∥∥∥∥∥
k∑

j=1

ujMj

∥∥∥∥∥∥ (19)

=
1

|u1|
∥Mu∥ . (20)
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Now taking u to be the minimum singular vector of M , then by definition of the
minimum singular vector, this equals

∥u∥
|u1|

σmin(M), (21)

which proves the statement, because we can assume w.l.o.g. that|u1| ≥ 1√
k
∥u∥, as at

least one index ui has to fulfill this inequality.

This means in order to prove the theorem, it suffices to show that for all i ∈ [k],
we have ∥∥∥Π⊥

i (Ũ ⊙ Ṽ )i

∥∥∥ ≥
√
kΩ(ρ2/d2), (22)

i.e. that the norm is not too small. This seems tricky to prove, as not only the Khatri-
Rao product is random (in the noise added to Ũ and Ṽ ), but so is the projector Π⊥

i as
it depends on Ũ and Ṽ . Instead of proving this statement, we can prove a stronger
statement:

Let W ⊂ Rd2 be any subspace with dimension at least 0.01d2. Show that
∥∥∥ΠW (Ũ ⊙ Ṽ )i

∥∥∥
is not too small for all i, where ΠW denotes the projection to W .

Note this is indeed a generalization of the previous statement, as we have
k ≤ 0.99d2, hence dimΠ⊥

i ≥ d2 − (k − 1) ≥ 0.01d2.
Intuitively, the statement makes sense: W is a very large subspace with dimen-

sion of the order of d2, hence, if we take a random vector and project it onto that
subspace, there’s a good chance that a decent amount of that vector lies in the
subspace W .

We will first prove a “baby version” of this statement, namely a similar statement
in dimension d instead of d2: Letting W ⊂ Rd be a subspace with dimW ≥ 0.01d,
and ũ = u+ ρ√

d
g for some u ∈ Rd and g ∼ N (0, Idd), can we show that∥ΠW ũ∥ is not

too small?
We will prove the statement in two different ways, the first one being more

straightforward, but not providing us with the tools needed to prove the statement
in d2 dimensions, while the second prove will be more closely related to the proof
in d2 dimensions.

Proof 1. Let D = dim(W ) ≥ 0.01d, and wi, ..., wD be an orthonormal basis of W .
Recall that ũ = u+ ρ√

d
g. We have that {⟨g, wi⟩}i are independent normal variables.
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Furthermore,

∥ΠW ũ∥ =
∥∥(⟨ũ, wi⟩, ..., ⟨ũ, wD⟩)

∥∥ ≥ max
j

∣∣⟨ũ, wi⟩
∣∣ (23)

= max
j

∣∣∣∣⟨u,wi⟩+
ρ√
d
⟨g, wi⟩

∣∣∣∣ . (24)

Now Gaussian anti-concentration tells us that for g ∼ N (0, 1) and any interval I of
length t, we have

P[g ∈ I] ≤ O(t). (25)

Since all ⟨ũ, wi⟩ are independent Gaussians with variance ρ2

d
, centered at random

points, this means that

P]
[∣∣⟨ũ, wj⟩

∣∣ ≤ t
ρ√
d

∀j
]
≤ (O(t))D = exp(−Ω(d)), (26)

where we choose t small enough such that the last equality holds.
Proof 2. We construct a row echelon basis of W , namely define w1 = (1, ⋆, ⋆, ...),

w2 = (0, 1, ⋆, ⋆, ...), ..., wD = (0, ..., 0, 1, ⋆, ⋆, ...), where all ⋆ entries are absolute value
bounded by 1, meaning∥wi∥ ≤

√
d (which we can assume exists w.l.o.g. by changing

the coordinate system if needed). We are now going to “reveal” ⟨ũ, wj⟩ in reverse
order, from j = D to j = 1, meaning that we will see that even knowing ⟨ũ, wj⟩
for j = D,D − 1, ..., i + 1, there will be enough randomness “leftover” in ⟨ũ, wi⟩
to apply Gaussian anti-concentration. This intuitively makes sense, as all wj for
j = D, ..., i + 1 have zeros in the first i entries, thus telling us nothing about the
randomness in the ith coordinate of ũ.

To make this precise, note that

⟨ũ, wi⟩ = ⟨u,wi⟩+
ρ√
d
gi +

ρ√
d

∑
j>i

(wi)jgj, (27)

so by Gaussian anti-concentration we get

P

[∣∣⟨ũ, wi⟩
∣∣ ≤ O(ρ/

√
d)

∣∣∣∣⟨ũ, wD⟩, ..., ⟨ũ, wi+1⟩

]
≤ O(1) (28)

for the conditional probability (here, we set t = 1). This gives us

P
[∣∣⟨ũ, wi⟩

∣∣ ≤ O(ρ/
√
d) ∀i

]
≤ exp(−Ω(d)) (29)

as before, which finishes the second proof.
Now the question is how to apply this to the original setting, where we have a

subspace W of dimension of order d2, and a Khatri-Rao product of matrices (i.e. a
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matrix) instead of a vector. We are not going to go into the details, but at a high level,
the strategy is to come up with a two-dimensional equivalent of the row-echelon
basis, namely define W (i,j) ∈ Rd×d by

W (i,j) :=



0 . . . 0
... . . . ...
0 . . . 0

0 . . . 0 1 ⋆ . . . ⋆
... . . . ... ⋆ ⋆

. . . ...
... . . . ...

...
... . . . ...

0 . . . 0 ⋆ ⋆ . . . ⋆


(30)

where the 1 lies at the (i, j)th entry. With this basis at hand, the one-dimension argu-
ment is iterated twice, meaning for a fixed i, we can look at the vectors {W (i,j)ṽ}j
for some vector ṽ and iterate the one-dimensional argument over these vectors to
find a vector v(i) that looks similar to a row-echelon vector. Then, we can iterate the
one-dimensional argument over {⟨ũ, v(i)⟩}i again to show that these dot products
are not too small.
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