CS 224 Fall 2023 Scribe: Cole Harten
Nov. 6, 2023

Lecture 17: Computational Complexity I

Today, we introduced the next unit on computational complexity, specifically
on proving lower bounds of problems. These lower bounds serve to tell us when
continuing to find a more efficient algorithm for a problem is futile and when we
should revist and possibly alter the assumptions we made.

1 Finishing Lecture 16

1.1 Finishing Mean Field Limit

Recall that last time we hade a MLP with scaling defined as
1
folx) = Nzaia(m,@). (1)

Here N represents the “width” of the network (the number of neurons). We have
previously observed that as N — oo, the neurons at time ¢ of the gradient flow will
converge to ii.d. draws from the distribution p,, which satisfies the differential
equation

Orpr = div(pe - Vi) ()

However, in many settings, this PDE is intractable to work with. Hence, in order
to greatly simplify the problem, we often consider toy models, specifically ones
with high symmetry. For example, one such simplified, model that makes use of
symmetry is when the z’s are normally distributed and y = ¢((w*, x)). This is a
type of single index model, where the data depends only on a fixed projection of the
data (in the direction of w*). Hence, in this model the data is secretly 1-dimensional.
As in this situation, the data distribution doesn’t vary with rotations so long as w*
is preserved, this greatly simplifies the PDE.

In these settings you can often numerically solve the PDE to obtain actual pre-
dictions. However, such numerical methods rely on the simplifying assumptions
we made earlier. However, it is still difficult to get provable results from these
algorithms. Currently, the only “end-to-end” non-asymptotic, global convergence

1

result for learning these types of single-index models with “standard” gradient
descent is the following theorem, stated without proof:

Theorem 1. [MHD™ 23] Projected gradient descent on a one-hidden-layer student network
with quartic polynomial activations and polynomial width learns certain functions of the
form y = p({w*, x)), where p is a degree-4 polynomial, over Gaussian inputs using O(d>')
samples.

This theorem has an enormously complex proof that is beyond the scope of the class.

Now we will revisit the correlational statistical query model (CSQ). For single
index-models (models of the form y = ¢((w*, z))), the complexity of CSQ algo-
rithms are dictated primarily by what is known as the “informal exponent,” that
is, the smallest s for which the s-th Hermite coefficient of ¢ is non-zero. If we are
training only a single neuron, running online SGD will learn in an expected amount
of time, O(d*).JAGJ21] There are results that generalize the idea of “leap complexity”
to multi-index models (models of the form y = ¢(]],;, x)) in time O(d"“*?)[ABAM23].

In general, the algorithms discussed above are optimal for CSQ algorithms. However,
there are (at least in principle) other more efficient non-CSQ algorithms, such as
filtered PCA which achieve O(d) sample complexity and fixed-polynomial runtime.
The optimality of these CSQ algorithms, can be proved using computational lower-
bounds (which we will discuss in a moment).

1.2 Recap of Supervised Learning

Still virtually all algorithms in the field of PAC learning, rely on low-degree polyno-
mials. We began with approximating binary circuits by their low degree Fourier
coefficients and ended with using the Mean Field Limit to learn low-degree compo-
nents of the underlying functions generating the data.

However, there are two distinct concepts of low degree polynomials have dis-
cussed. The first is What is the smallest degree for which there is a polynomial that
approximates the ground truth? This approach exploits Fourier/Hermite concentra-
tions. Algorithms include low-degree algorithm, polynomial regression, and kernel
methods.

The other concept of low-degree polynomials is What is the smallest degree at which
the ground truth has a nonzero polynomial component? This approach exploits informa-

tion exponents/leaps. Algorithms included tensor methods, feature learning/GD
beyond NTK.

2 Introduction to Computational Complexity

2.1 Guiding Examples

Throughout the entire course, we have consistently seen two examples show up:
 Learning a mixture of k Gaussians in R?
¢ Learning neural networks of size k over Gaussian inputs in R?

For both algorithms, it is an open question regarding the existence of a fully
poly(k, d)-time algorithm. This could either be because we just haven’t found
some mathematical solution yet, or it could be because no efficient algorithm exists
as the problem is currently formulated. To rule out the first option, we make use of
lower bounds.

2.2 Computational Hardness

We have dealt with several problems restricted by statistical lower bounds. For
example, the Airy Disks from the first lecture will require exponentially many sam-
ples to differentiate below the diffraction limit. In this case, solving this problem
without enough data is impossible even with an infinite amount of compute.

In this section, we will explore the case where there is enough signal in the dataset
that a computationally inefficient algorithm (i.e. brute force) can solve the problem,
but that no computationally efficient algorithm exists to solve the problem. There
are a couple of different version of classical computational hardness such as NP
hardness (SAT, graph coloring, etc.) and cartographic hardness (public-key cryptog-
raphy, pseudorandom generators, etc.).

However, we will focus primarily on “average case hardness.” A classic example is
the planted clique problem:

Setup: Given the adjacency matrix of a graph sampled either from an Erdos-Renyi graph
G(n,1/2) (every edge independently included with probability 1/2) or a Planted graph
(graph is G(n, 1/2) with a random clique of size N).

Task: Determine which case we are in with high probability over the randomness

of the instance.

The largest clique in G(n,1/2) is of size either 2logn or 2logn + 1 with proba-
bility 1 — 0,(1). Thus, the problem is information-theoretically intractable when
N € Q(logn). We could brute force a solution to this algorithm (i.e. there is enough
“signal”), but no known computationally efficient algorithm exists for N = o(v/N).
In the case of N € Q(v/N), there does exist an efficient algorithm using the top
eigen vector of the adjacency matrix.[AKS98] It is hypothesized that no poly-time
algorithm exists for this case.

Another problem is learning parity with noise, which is a noisy supervised learning
task. For positive n, random S C [d], and dataset D = {(x;, y;)}¥,, defined as

Tg w.p.l —n
—Tg otherwise ’

z ~ {£1}1 y{

N = O(dlog d) samples are information-theoretically sufficient, as we could (ineffi-
ciently) brute force the solution. When we have n = 0, this is just a linear system
modulo 2 that we could solve in polynomial time with Gaussian elimination. It is
hypothesized that no polynomial time algorithm exists even to distinguish the y’s
from random labels.

2.3 Traditional Hardness Paradigm

The classic approach to proving hardness rests of reductions. Given some problem
X that is provably hard, show that efficiently solving some other problem Y could
be (efficiently) mapped to a solution of problem X. This approach is very effective
for worst-case hardness but break down for average-case hardness. This requires us
to look for new ways to prove average-case hardness that do not rely on reductions.

3 Lower Bounds in Restricted Models

3.1 Restricted Model of Computation

Here is an alternate approach to proving these lower-bounds:

* Formally define a restricted model of computation that captures all known
algorithms for the problem in question.

* Prove a lower bound against algorithms in the restricted model

4

This approach works unconditionally (unlike NP hardness which is conditional on
P # NP). There are a few different approaches to this proof:

* Statistical query: Only makes use of noisy estimates of population-level
statistics of the data distribution

* Lipschitz algorithms: If the instance is pertubed, the algorithm output does
not change much.

* Low-degree algorithms: Only uses low-degree polynomials evaluated on the
data

* Sum-of-Squares Algorithms: There is a “Canonical” SoS relaxation of the
problem, and we want to prove high degree SoS is necessary

These are much “easier” to show than reductions; however, they are often less
convincing than reduction-based bounds.

3.2 Statistical Query

We will return to the correlational statistical query (CSQ) model of computation.
We will define the statistical query (SQ) model of computation as an algorithm that
only interacts with some dataset {(z;, y;)}i\, through some oracle that takes in

Y :RT'xR—=R

and outputs
E[¢(z,y)] + noise,

where Inoise | < 7 for some tolerance 7 = y/1/N.

If the labels y; € {+1} and = ~ ¢ for some unknown distribution g, then SQ = C'SQ
and we have

Bly(r,y)] = B | 5 o(e. 1) + Lo, ~1)| =Elg(e)] +Bly- (@) ©)

In general, the statistical query model can capture essentially any known learning
algorithm except for Gaussian elimination and others (it is still an open question
which algorithms it cannot capture).

3.3 Proof of SQ Lower Bound for Noiseless Parity

Theorem 2. [Kea98] Any statistical query algorithm for learning parity (without noise)
requires 29 gueries or tolerance 274,

Proof. Recall the setting from above for learning parity with noise. We have the data
set D = {(x;, y;)} X, with

T w.p.l —
x ~ {£1}¢ y = 5 p ‘77 .
—Tg otherwise

Now, however, for the setting without noise, we will set 7 = 0. Consider first any
CSQ ¢ : {+1}% — [—1,1]. Let

¢s = Eylzso()].
I claim first that for uniformly random subsets S C [n],
Vgr[¢5] > 9~8%n),

The proof of this lemma is as follows:

I claim that the inside expectation « is equal to 0 if = # 2’. For z # 1, Eg[zs] = 0 so
if x 7é JI/, then ES[xsl’g«] = E[Zs] = 0and ES,S’ [l’sl’g«] = ES[‘IS} Es [ZE{SV] = 0 because
at most of of z, 2’ = 1. This is a “pairwise independence” argument.

Returning, to the previous expression, we can use this fact to get

Thus, by Chebyshev’s inequality, we can get that

Pllgs — El6]] > 7] < — Var(os)

<

2n7—2

Hence, in order to answer the CSQ ¢, we can just output Es[¢g]. If the tolerance is
equal to 7, this is accurate for 5 fraction of parity functions. That is, each CSQ
only rules out at most 1/7> many S’s. Thus, we need 2" /7% many queries. Letting
7 := 272 completes the proof. O

References

[ABAM23] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd
learning on neural networks: leap complexity and saddle-to-saddle
dynamics, 2023.

[AG]21] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. On-
line stochastic gradient descent on non-convex losses from high-

dimensional inference. Journal of Machine Learning Research, 22(106):1-51,
2021.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large
hidden clique in a random graph. ETH Zurich, 1998.

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries.
J. ACM, 45(6):983-1006, nov 1998.

[MHD*23] Arvind Mahankali, Jeff Z. Haochen, Kefan Dong, Margalit Glasgow,
and Tengyu Ma. Beyond ntk with vanilla gradient descent: A mean-
field analysis of neural networks with polynomial width, samples, and
time, 2023.

	Finishing Lecture 16
	Finishing Mean Field Limit
	Recap of Supervised Learning

	Introduction to Computational Complexity
	Guiding Examples
	Computational Hardness
	Traditional Hardness Paradigm

	Lower Bounds in Restricted Models
	Restricted Model of Computation
	Statistical Query
	Proof of SQ Lower Bound for Noiseless Parity

