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1 Motivation
Neural networks have proven extremely powerful in practice due to their ability to learn very complex
functions, despite their high dimensionality and complex loss landscape. It is commonly conjectured
that neural networks exploit (1) low dimensional latent structures, and (2) hierarchical structures to
learn effectively. We would like to ideally characterize the ‘hierarchical structure’ of functions: [AAM23]
proposes the leap complexity, which is a notion of hierarchy in functions, and matches the CSQ lower
bounds for learning 2-layer neural networks. The leap complexity generalizes the previous notion of the
’staircase property’ as given in [ABAB+21].

The paper improves the existing bounds on the runtime of online-SGD (which are of order dD where
D is the degree of a function’s hermite representation), and proposes a bound of dmax{Leap(f∗)−1,1}

which can be significantly smaller than dD. Furthermore, the paper uses an analysis technique that
analyzes the whole trajectory of training, rather than a 1-step gradient descent analysis. This allows
more insight into what is happening during online SGD training and how SGD picks up the support of f∗
over time. This analysis technique uses tools from hermite analysis and stochastic processes to obtain a
drift-martingale decomposition of learning dynamics. Studying this analysis technique is interesting on
its own as it can prove better bounds than one-step analyses and lead to more insight about stochastic
optimization algorithms.

2 Setup
We are interested in learning functions f∗(x) that have low-latent dimension. That is, f∗(x) only
depends on x through a low-dimensional subspace. Formally, we have f∗(x) = h∗(z) where z = Ux,
and U ∈ RP×d with UU⊤ = IdP represents a P = O(1) dimensional subspace1. Throughout [AAM23],
the authors furthermore assume that U is simply the projection onto the first P coordinates to simplify
the analysis. That is, we only work with the first P coordinates of the input. This will not be true in
general, and is only used to simplify the analysis. We also assume h∗(z) is a degree D-polynomial, so
that our target function is a degree-D polynomial of the first P coordinates of the input.

In the paper, the authors consider two distributions for the inputs x. One distributed gaussian and
the other boolean uniform over the hypercube. In this project, we consider the gaussian case where
x ∼ µ⊗d where µ = N (0, 1), but the analysis for both cases are similar. We consider the online learning
case, where at each time step t we sample a new data point (xt, yt) with xt ∼ µ⊗d and yt = f∗(x

t)+ϵt.
Here, ϵt is independent of xt and is K-sub Gaussian.

1P = O(1) as d grows
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We want to use a 2-layer network which we call f̂NN to learn f∗. We have M neurons and the
weights of our network are represented by θ = (aj , bj ,wj)

m
j=1. Therefore, we have

f̂NN(x; θ) =
∑

j∈[M ]

ajσ(⟨x,wj⟩+ bj) (1)

3 Leap Complexity
The leap complexity formalizes the notion of a ‘hierarchical structure’ in functions, and is closely related
to the runtime of online SGD while training neural networks. Now, we state the leap complexity and also
a general conjecture relating leap complexity to the runtime of online SGD. Let h∗ ∈ L2(µ

⊗P ) be any
function and let Hek(z) denote the k’th hermite polynomial. Recall that {Hek}k≥0 forms an orthonormal
basis for L2(µ). Similarly, let S ∈ ZP denote a set of ‘degrees’ and let χS(z) =

∏
i∈[P ] HeSi

(zi).
Here, the collection {χS}S∈ZP form an orthonormal basis of L2(µ

⊗P ). Hence, for any given function
h∗ ∈ L2(µ

⊗P ), we have the hermite coefficient ĥ∗(S) = Ez∼µ⊗P [χS(z)h∗(z)] and we have

h∗(z) =
∑
S∈ZP

ĥ∗(S)χS(z) (2)

Using this hermite representation of a function, we define the leap complexity.

Definition 1 (Leap Complexity). Let h∗ ∈ L2(µ
⊗P ) and let S(h∗) = {S1, . . . , Sm} denote the non-zero

basis elements as in the expansion Equation (2). The leap complexity is defined as

Leap(h∗) = min
π∈Πm

max
i∈[m]

∥∥Sπ(i)\ ∪i−1
j=0 Sπ(j)

∥∥
1

where
∥∥Sπ(i)\ ∪i−1

j=0 Sπ(j)

∥∥
1
≜

∑
k∈[P ] Sπ(i)1{Sπ(j)(k) = 0, ∀j ∈ [i − 1]} with Sπ(0) = 0P . If

Leap(h∗) = l we say that h∗ is a Leap-l function.

This definition deserves some explanation. Intuitively, it is saying that we are looking at all possible
orderings of the terms of our function, and finding the one that gives us the minimum ‘leap.’ Here, we
think of the leap as follows. Suppose you start with 0 terms and keep adding terms to your function.
At each step, the leap associated with that step is the sum of the degrees of the coordinates you added
that were not present earlier in your terms. Then, the leap of a permutation is the maximum leap at
any given step, and the leap of a function is the minimum leap achievable by any permutation. This
definition suggests that the hardness of training comes from large degree terms in the function that do
not have corresponding lower degree terms. For instance, we have

Leap(He1(x1)He1(x2)He2(x3)) = Leap(He3(x1)) = 3

Leap(He2(x1) + He2(x2) + He19(x1)He23(x2)) = 2

So, even though the second polynomial has higher degree, it has lower leap, and therefore ‘easier’ to
learn due to its hierarchical structure. Furthermore, if you picked a ‘random’ function, it is likely to have
lower order terms, which means it will be easy to learn.

Now, we state a general conjecture relating the leap complexity to the runtime of online SGD on
functions.
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Conjecture 1. Let f∗ : Rd → R in L2(µ
⊗d) be a function satisfying the low-latent dimension hypothesis.

I.e. f∗(x) = h∗(Ux) for some P = O(1). Let f̂ t
NN a fully connected neural network with poly(d) edges

that is the output of a training process using t steps of online SGD on the square loss. Then, for all but
a measure-0 set of functions, we have

Ex[(f̂
t
NN(x)− f∗(x))] ≤ ϵ if and only if t = Ω̃(dmax{1,Leap(h∗)−1})poly(1/ϵ)

The conjecture says that, to achieve ϵ error for functions that map d dimensions to 1 dimension, we
need polynomial number of steps in d with the exponent relating to the leap complexity.

4 Algorithm
Throughout the analysis, we make use of some regularity properties of the activation function σ. Specif-
ically, we have the following assumption

Assumption 1 (Activation Function). Let σ : R → R be as follows. There exists a constant K > 0
such that σ is D + 3-differentiable with

∥∥σ(k)
∥∥
∞ ≤ K for k = 0, 1, . . . , D + 3 and |µk(σ)| > 1

K for
k = 0, 1, . . . , D where µk(σ) is the k’th hermite coefficient of σ.

Mainly, we want the magnitude of all the derivatives be bounded above while the hermite do not
vanish. This assumption is satisfied for the shifted sigmoid function σ(z) = 1

1+e−z+c . However, it is
not satisfied for ReLU as ReLU is not differentiable. We will be performing online-SGD to minimize the
population loss

R(θ) = Ex[ℓ(f∗(x), fNN(x; θ)]

However, we will not be using vanilla SGD. We need to make some crucial modifications to SGD to
make our analysis viable. First, we train layerwise, so that we can analyze each of the layers separately.
Furthermore, we keep the bias terms frozen. Secondly, we do some projections while training the first
layer to make sure that the weights wj do not blow up to infinity.

Specifically, we do 2 types of projection on the weights wj . First, we project them onto a ℓ∞ ball
of radius ∆ to bound the maximum magnitude. Then, we take the ‘small’ coordinates (those that had
magnitude less than r until the current time step) and project those coordinates to the unit sphere.
Hence, the large coordinates are clipped and the small coordinates are kept on the unit sphere.

Let 0 < r be some parameter. We define the small coordinates up to time t for neuron j as

Sj,t = {i ∈ [d] : |w̃t′

j,i| < r for all 1 ≤ t′ ≤ t}

where w̃j is the neuron weights before projection. Then, define P∞(w)i = sign(wi)min{∆, |wi|}.
Similarly, if St(w) denotes the vector obtained by setting all the components of w that have magnitude
at least r to 0, we have

Pt(w)i =

{
wi if i ∈ St

wi

∥St(w)∥ otherwise
(3)

Then, our projection is Projt(w) ≜ PtP∞(w). Finally, because of the projection onto the unit
sphere defined by the small coordinates, we use the spherical gradient. Specifically, for any function f
the spherical gradient is defined as
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gradwt
j
f(wt

j) ≜ ∇wt
j
f(wt

j)− St(wt
j)⟨St(wt

j),∇wt
j
f(wt

j)⟩ (4)

This gives the gradient that is tangential to the direction of projection. The full training algorithm is
given in Algorithm 1. The main challenge in analyzing the algorithm is the first layer. Once the first
layer is frozen, the second layer is simply a linear model.

There are important caveats about this algorithm selection. First, the uniform projection onto the
ℓ∞ ball makes the algorithm non-rotationally invariant. Because of this, the analysis is limited to the
specific latent structure (only using first P coordinates) instead of the more general latent structure
given by z = Mx. Second, the clipping of each of the neurons by the same amount decreases the
diversity of the neuron values. This is because the entries of neurons that are in the support of the
latent space all converge to ∆ up to a sign. This limits which functions could be learned in the second
layer training by a linear model since we do not have a great diversity of features at the end of first round
training. Therefore, the results we have are simplied cases, and are important for modeling purposes;
there are still important theoretical challenges remaining in this direction.

Algorithm 1 Online SGD with Projection Steps. Parameters: initialization scales κ, ρ >, step sizes
η1, η2, number of iterations T1, T2, second layer ℓ2 regularization parameter λa and projection parameters
r,∆ > 0.

1: Initialize a0j ∼ Unif({±κ}), bj ∼ Unif([−ρ, ρ]), w0
j ∼ Unif({±1/

√
d}d)

2: for t = 0, . . . , T1 − 1 and all j ∈ [M ] do
3: w̃t+1

j ← wt
j − η1gradwt

j
ℓ(yt, f̂NN)(x

t, θt)

4: wt+1
j ← Projt(w̃

t+1
j )

5: Leave other parameters untouched, at+1
j = atj , b

t+1
j = btj .

6: end for
7: for for t = T1, . . . , T1 + T2 − 1 and all j ∈ [M ] do
8: Freeze first layer: wt+1

j = wt
j , b

t+1
j , btj

9: Perform GD with ridge regularization: at+1
j = (1− λa)a

t
j − η2

∂
∂at

j
ℓ(yt, f̂NN(x

t, θt)

10: end for

5 Analysis
Here, we initially consider learning a single monomial. Let h∗(x) =

∏
i∈[P ] Heki

(xi). We call [P ] the
support of this function. Our goal is to prove the following theorem:

Theorem 1 (Learning a monomial, first layer). Let σ be an activation that satisfies assumption 1. Then,
for 0 < r < ∆ sufficiently small constants that depend on D,K and ρ ≤ ∆, the following holds: For
any C∗ > 0 there exist constant Ci, i = 0, 1, . . . , 6 such that

T 1 = C0d
D−1 log(d)C0 , η1 =

1

C1κdD/2 log(d)C1
, κ ≤ 1

C2dC2

and for sufficiently large d such that r ≥ C0 log(d)
C0/
√
d, the following event holds with probability at

least 1−Md−C∗ . For any neuron j ∈ [M ] such that a0jµD(σ)
∏

i∈[P ](w
ki
j,i) > 0, we have

1. On the support (for i ∈ [P ]), we have |wT 1
j,i − sign(w0

j,i) ·∆| ≤ C5/
√
d log(d)
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2. Outside the support (for i = P + 1, . . . , d) and for
∑

i>P (w
T 1
j,i )

2 = 1, we have |wT 1
j,i − w0

j,i| ≤
C6r

2
√
d.

This theorem says that for neurons that are initially aligned with the function, the coordinates in
the support are amplified whereas the coordinates outside the support remain small. Additionally, this
theorem says that if we stop early (i.e. for t ≤ T 1/(C4 log(d)

C4)) the neuron weights are close to their
initialization. This means that the learning happens towards the end of the dynamics, and not in the
beginning. Another important thing to note is that η1 = o(1/

√
T 1). This is because the noise terms

(coming from the stochastic sampling of the gradients) form a martingale that grows at rate
√
T 1, and

the drift terms (coming from population gradients), grow at rate T 1. This choice of η1 will eliminate
the contribution of the noise terms while still keeping the drift term.

First, we will soon show that the training dynamics can be well approximated by a correlation
dynamics, where each neuron’s update is independent of other neuron’s updates. Because of this, we
will analyze each neuron separately. Therefore, from now on, we will drop the subscript j in our neurons
and use (w, a) instead of (wj , aj). Furthermore, because we analyze the whole dynamics, we would
like to be able to condition on where we are at during the dynamics. Therefore, we will define some
stopping times that we will use for conditioning.

Before we do that, define the negative gradient at time t to be

vt ≜ (yt − f̂NN(x
t; θt))a0σ′(⟨wt, boldxt⟩)xt (5)

Then, define the spherical gradient ṽt we use in our training as

ṽt ≜ −gradwtℓ(yt, f̂NN(x
t; θt)) = vt − St(wt)⟨St(wt),vt⟩ (6)

Hence, the update equations become w̃t+1 = wt + η1ṽ
t, wt+1 = P∞w̃t+1, and wt+1 = Pt+1w

t+1.

5.1 Simplifying Assumptions

In our proof, we make some important simplifying assumptions. First, because of assumption 1, one can
show that small shifts in the activation function do not affect the hermite coefficients of the activation
a lot. Then, we can choose bj ≤ ρ small such that the bias terms are small. The bias terms are also
frozen during training, so the effect of the bias terms can be assumed to be negligible, and we assume
bj = 0. We furthermore assume wj,i > 0 for our proof. This is because we can flip the sign of the wj,i

and also the sign of the second layer weights and the input weights, without affecting the distribution
they are each sampled from, up to signs. This is mainly to not keep track of the signs of the neuron
weights throughout our analysis.

5.2 Stopping Times on Dynamic

Because we analyze the whole training dynamic, we will need to keep track of where the current time
step t is. We initially define the following stopping times that will help us condition on the sizes of the
neuron weights, and also the sizes of other variables such as the gradients, inputs, labels, etc.

τ+ ≜ inf

{
t ≥ 0 : max

i=P+1,...,d
{|w̃t+1

i | ∨ |wt+1
i | ≥ 3/(2

√
d)}

}
(7)

τ− ≜ inf

{
t ≥ 0 : min

i∈[d]
{|w̃t+1

i | ∧ |wt+1
i |} ≤ 1/(2

√
d)

}
(8)

τ0 ≜ inf
{
t ≥ 0 : max(

∥∥vt/a0
∥∥
∞ ,

∥∥ṽt/a0
∥∥ , |yt|,∥∥xt

∥∥
∞) ≥ C0 log(d)

C0
}

(9)
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We will adopt the notation from the paper and use ∨ and max interchangeably, and also ∧ and min
interchangeably. Ideally, we would like τ+ to be larger than our training epoch T̄1 since we want the
weights not in the support (i.e. wi for i = P + 1, . . . , d) to be small. In fact, we will later show that
τ+ ∧ τ− ∧ τ0 > T 1 with high probability. We will condition t being smaller than these stopping times
in most of our proof. First, we show that we have τ0 ≤ τ+ ∧ dD with high probability.

Lemma 1 (Bound on τ0). Suppose ∆ ≤ 1. Then, for any constant C∗ > 0, there exists some other
large enough constant C0 that only depends on C∗, D,K such that for d ≥ 2, we have

Pr[τ0 ≤ τ+ ∧ dD] ≤ d−C∗

The proof of this lemma directly follows from summing all the probabilities of τ0 = t for t ≤ τ+∧dD
and some tail bounds shown on ϵt. By making C0 larger, we decrease the probability of τ0 = t to
achieve the probability bound on the right. We omit the full proof, as it is peripheral to this paper. This
result will be extremely useful as it helps us bound the magnitudes of several quantities by conditioning
t < τ0.

5.3 Reduction to Correlation Dynamics

Now, we prove the earlier claim that the dynamics is closely approximated by a correlation dynamics.
Define the correlation dynamics gradient and its spherical counterpart as follows:

ut = a0ytσ′(⟨wt,xt⟩)xt and ũt = ut − St(wt)⟨St(wt),ut⟩ (10)

We will show that ut and ũt are close to vt and ṽt respectively. The idea is that we can make the
magnitude of f̂NN(x

t; θt) arbitrarily small by making κ (initialization size of second layer) small. For
t < τ0, notice that∥∥vt − ut

∥∥
∞ /|a0| ≤

∥∥∥f̂NN(xt; θt)σ′(⟨wt,xt⟩)xt
∥∥∥
∞

(a)

≤ κK2MC0 log(d)
C0 ≤ κ̃ (11)

for κ̃ = 2κdK2MC0. In (a), we bound f̂NN(x
t; θt) using ∥σ∥∞ ≤ K and σ′ similarly using the

assumption on the activation (Assumption 1), and ∥x∥∞ ≤ C0 log(d)
C0 using t ≤ τ0. Similarly, for

spherical gradients, we have∥∥ṽt − ũt
∥∥
∞ /|a0| ≤

∥∥vt − ut − St(wt)⟨St(wt),vt − ut⟩
∥∥
∞ /|a0| (12)

(b)

≤ (1 + d)
∥∥vt − ut

∥∥
∞ /|a0| ≤ κ̃ (13)

where we use ∥St(wt)∥∞ ≤ 1 and |⟨St(wt),vt−ut⟩| ≤ ∥St(wt)∥1 ∥vt − ut∥∞ ≤ d ∥vt − ut∥∞ in (b).
Notice that we divide the difference by |a0| = κ. We can interpret this as follows: The contribution of
other neurons to vt scale with κ2 whereas the effect of a neuron on its own scales with κ. Hence, we
can reduce the contribution of other neurons relative to own contribution by scaling κ appropriately.

5.4 Rewriting Projection Step

We first define additional stopping times that are related to the projection steps. For all i ∈ [d], define

τ ri ≜ inf
{
t ≥ 0 : |w̃t+1

i | ≥ r
}

(14)

τ∆i ≜ inf
{
t ≥ 0 : |wt+1

i | ≥ ∆− |a0|η1C0 log(d)
C0

}
(15)

τ r ≜ sup
i∈[P ]

τ ri and τ∆i ≜ sup
i∈[P ]

τ∆i (16)
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where C0 is the same C0 as before. Here, τ ri is the first time a coordinate is not used in the spherical
projection (and it is never included again), and τ∆i similarly gives us a way of conditioning that a
coordinate is not projected onto the ∆-ℓ∞ ball.

Then, notice that if t < τ∆i ∧ τ0, we have that |w̃t+1
i | = |wt

i + η1ṽ
t
i | ≤ ∆. This is because

wt
i ≤ ∆ − |a0|η1C0 log(d)

C0 using t < τ∆i and ṽti < |a0|C0 log(d)
C0 using t < τ0. Hence, we do

not have projection on the i’th coordinate when t < τ∆i . And whenever t ≥ τ∆i , we have that the
weights were close to ∆ at some point, and it can be shown that they will stay close to ∆. Now, we
will get rid of the ℓ∞ projection term by replacing it by a time-varying multiplicative constant. Define
γt
i = min

(
1,

∆−sign(ṽt
i)w

t
i

η1|ṽt
i |

)
and let the truncated gradient be gti = γt

i ṽ
t
i . Then, the update rule becomes

wt+1 = wt + η1g
t and wt+1 = Pt+1wt+1. This helps us work with the gradients without worrying

about the ∆-clipping projection.

5.5 Approximating Population Gradient

In this section, we will show that the gradients for the coordinates in the support and outside the support
differ. The gradients for the support are positive, bounded below, whereas the gradients outside the
support are close to 0. First, we will find an expression approximating the population gradient for i ∈ [P ].
We can do this using Hermite analysis, and the fact that the ‘correlation gradient’ ũt is close to the
actual gradient. We have the following lemma that lets us approximate the population gradient:

Lemma 2. Let χ∗(w
t) =

∏
j∈[P ](w

t
j)

kj . Let i ∈ [P ] and t < τ∆i ∧ τ0. Furthermore, let t < τ ri such
that i ∈ St(wt). Then, we have∣∣∣∣∣∣gti − a0

χ∗(w
t)

wt
i

ki − (wt
i)

2
∑

j∈St∩[P ]

kj

EG[σ
(D)(

∥∥wt
∥∥
2
G)]

∣∣∣∣∣∣ ≤ |a0|κ̃
We have similar (but different) expressions for the cases t ≥ τ ri and i > P which have similar proofs.

We omit those here as the derivation is quite similar to this expression. Now, let us prove this lemma.
From hermite analysis, we have the following identities:

EG[Hek(G)f(G)] = EG[f
(k)(G)], xHek(x) = Hek+1(x) + kHek−1(x) (17)

Now, we know that |gti − E(xt,yt)[ũ
t
i]| ≤ κ̃|a0| as we showed that the correlation gradient approximates

the true gradient. Now, by transforming the integral to standard gaussian, iteratively expanding the
expectation and using the hermite-function product formula (eq. (17)), we have

E

 ∏
j∈[P ]

Hevj (xj)σ
′(⟨wt,xt⟩)

 =

 ∏
j∈[P ]

(wt
j)

vj

EG

[
σ(1+

∑
i∈[P ] vi)(

∥∥wt
∥∥
2
G)

]
Furthermore, from the second hermite formula (eq. (17)) we have

xif∗(x) =

 ∏
j ̸=i,j∈[P ]

Hekj (xj)

 (kiHeki−1(xi) + Heki+1(xi))
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Then, writing out the definition of ũt, we get

E(xt,yt)
(a)
= E(xt,yt)

a0(f∗(xt) + ϵt)

xt
i − wt

i

∑
j∈St

wt
jx

t
j

σ′(⟨wt,xt⟩)


(b)
= a0

χ∗(w
t)

wt
i

ki − (wt
i)

2
∑

j∈St∩[P ]

kj

EG[σ
(D)(

∥∥wt
∥∥
2
G)]

+ a0χ∗(w
t)

wt
i − wt

i

∑
j∈St

(wt
j)

2

EG[σ
(D+2)(

∥∥wt
∥∥
2
G)]

where in (a), we expanded the definition of yt and ⟨wt,xt⟩. In (b), we used the fact that ϵt is independent
and has 0 mean to cancel the terms involving ϵ, and then simplified the remaining two terms using the
hermite formula. Now, because ∥St(w

t)∥2 = 1 (wt is after normalization), the second term in the sum
is equal to 0, and we get the expression in the formula in lemma 2.

Now, we furthermore simplify the population gradient. Notice that EG[σ
(D)(∥wt∥2 G)] = EG[HeD(G)f(G)]

where f(G) = σ(D)(∥wt∥2 G). Then, by assumption 1, shifts and scales do not change the hermite
coefficients of the activation function significantly (by choosing ∆ small enough so that the scaling
∥wt∥ is close to 1). Then, we have EG[HeD(G)f(G)] = Θ(µD(σ)). Furthermore, by choosing ∆ small
enough (with respect to D) and using (wi)

2 ≤ ∆2, kj ≤ D and ki ≥ 1 we can ensure that

D ≥ ki − (wt
i)

2
∑

j∈St∩[P ]

kj ≥ 1−∆2D > 0

Then, we can combine our expression for the population gradient (and the ones we omitted) to get lower
and upper bounds on the gradient when i ∈ [P ]. There exists constant c, C > 0 that only depend on D
and K,such that for all t < τ∆i ∧ τ+ ∧ τ−, for all i ∈ [P ], we have

ca0
χ∗(w

t)

wt
i

− |a0|κµD(σ) ≤ gti ≤ Ca0
χ∗(w

t)

wt
i

µD(σ) + |a0|κ̃

where this follows as we have sign(wt
i) = 1 since t < τ− (the w’s were lower bounded below at all

times, so they kept their initialization sign). Now, because we have a lower and upper bounds for the
wt

i (using t < τ+ ∧ τ−) that depend on d, we can choose κ̃ ≲ (1/
√
d)D−1 to absorb the |a0|κ̃ term

into the other terms. This is because the wt
i are of order

√
d and χ∗(w

t) is of order (wt
i)

D. Hence, for
i ∈ [P ] and t < τ∆i ∧ τ+ ∧ τ−, for some new c, C > 0 we have

ca0
χ∗(w

t)

wt
i

µD(σ) ≤ gti ≤ Ca0
χ∗(w

t)

wt
i

µD(σ)

Similarly, if we were to do the derivations in this section for i > P , we would get

|gti | ≤ Ca0µD(σ)wt
iχ∗(w

t)

 ∑
j∈St∩[P ]

kj

+ |a0|κ̃

The main intuition here is that for t ≥ τ r + 1 (if wt
i is large for i. > P ), and i > P , we have

St ∩ [P ] = ∅, so that the magnitude of gti will be bounded above by a |a0|κ̃. On the other hand, if
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i ∈ [P ] and wt
i is still small (t < t∆i ) then the gradients for these coordinates will be bounded away

from 0. Then, the learning dynamics will be pushing the first P coordinates to be large, whereas the
gradients will vanish for the rest of the coordinates. Hence, only the coordinates in the support will grow
until they reach ∆, which is how the dynamics picks up only the support.

5.6 Final result

Now, we will explain (but not rigorously prove) how the results above contribute to Theorem 1. We
have shown that the population gradients for the coordinates in the support (i.e. i ∈ [P ]) will be
positive, bounded below, while the gradients for the coordinates not in the support will be bounded
above by a small constant when the weights exceed r, which is a small constant. If we were performing
gradient descent using the population gradients (instead of the stochastic gradient), the coordinates in
the support would grow, while the others would remain small.

However, we have stochastic gradients gti that are estimates for the population gradients gi
t, which

will give us a drift + martingale dynamics. The drift term comes from the population gradients, whereas
the martingale term comes from summing terms that are ϵt multiplied by some term at each step, which
has expectation 0. Because the spherical projection term effects gti , we would need to bound its impact
to be able to compare gi

t to gti . Hence, we have the following lemma that bounds the impact of the
spherical projection.

Lemma 3. Suppose C0 log(d)
C0/
√
d ≤ r ≤ ∆/2 ≤ 1/(8

√
P ) and η1 ≤ d. Then, we have constants

C,C ′ > 0/ that only depend on D,K,C0 such that for d ≥ C ′ and all t < τ0 ∧ τ+, if St+1 = St

1

2
≤ 1− C1η

2
1

∥∥gt
∥∥2
2
≤ 1∥∥St+1(w

t+1)
∥∥
2

≤ 1 + C1η
2
1

∥∥gt
∥∥2
2

otherwise,

1

2
≤ 1− Cr2 ≤ 1∥∥St+1(w

t+1)
∥∥ ≤ 1 + Cr2

This lemma is used to approximate the gradient dynamics with the spherical projection using dynamics
without projection. Now, we will outline the rest of the proof. We will decompose the learning dynamics
into a drift and martingale term. Specifically, for i ∈ [P ] and t > τ ri , we have2

wt
i = w0

i + η1D
τr
i ,t

i + η1M
τr,t
i (18)

where D
τr
i ,t

i is a drift term that involves the sum of the population gradients over time, and η1M
τr,t
i is

a martingale term that sums up the ‘noises’ that we generate at each step due to the stochasticity of
the gradient. The key result is that the magnitude of the martingale term will grow with the square root
of number of iterations, while the drift term grows linearly. Then, choosing η1 = o(1/

√
T 1), will make

sure that the martingale term vanishes, while the drift term has unbounded contribution (in T 1). Then,
the rest of the proof is about bounding the effect of the martingale term. These rely on probabilistic
tools (such as Doob maximal inequality for martingales) and bounding the specific distortions due to
projections.

Finally, we need to prove the runtime of our algorithm, (i.e. the bound for T 1 in theorem 1). We
give a heuristic argument to why T 1 will scale with dD. Notice that the χ∗(w

t) term scales with 1/dD/2

2We have similar expressions for i > P or t ≤ τri
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since the wt
i scale with 1/

√
d (lower bound). Because the gradients scale with χ∗, we need that T 1

scales with 1/(η1χ∗) to reach a total effect of ∆ (i.e. O(1)). We furthermore want that η1 is o(1/
√
T 1),

which gives us that
√
T 1 has to scale with dD/2, giving us the dD runtime.

6 Extension to sum of monomials
Because of the way the analysis is structured, the proof for a single monomial extends nicely to the case
where the target function is a sum of nested monomials. We can do this by conditioning on learning
the support for the first Pl terms, and finding the runtime to learn the next terms. Specifically, now let
h∗ be a nested sum of hermite polynomials such that

h∗(z) =

L∑
l=1

∏
i∈[Pl]

Heki(zi) (19)

with 0 = P0 < P1 < · · · < PL, and ki are positive integers denoting the degrees of the hermite
polynomials as before. Now, we have the same result as theorem 1, except D = Leap(h∗). Hence,
the ‘runtime’ of our algorithm not scales with the leap complexity, instead of the degree of the target
function. This shows that adding smaller order terms to the target function can make learning easier,
as the training algorithm will pick up the support of the lower degree terms quickly, due to larger
contribution coming from the χ∗(w

t) term in the population gradient.
The reason the leap shows up in the runtime is as follows. Because lower order terms are learned

more quickly than the higher order terms, when we get to a high order term, the wt
i for the lower order

terms that are already learned will be Θ(∆) = Θ(r) = Θ(1). Then, consider χ∗,l(w
t) =

∏
i∈[Pl]

(wt
i)

ki .
We can write

χ∗,l(w
t) =

∏
i∈[Pl−1]

(wt
i)

ki

∏
i∈[Pl]\[Pl−1]

(wt
i)

ki ≥ r
∑

i∈[Pl−1] ki
∏

i∈[Pl]\[Pl−1]

(wt
i)

ki

Because during the learning process (t < τ−), we have wi ≥ 1
2
√
d
, The rightmost product will give a

d−Dl/2 scaling, where Dl is the leap in the target function from Pl−1 to Pl. Then, χ∗,l term contributing
to the gradient scales with d−Leap(h∗)/2, instead of dD/2 in the previous section. Furthermore choosing
η1 = O( 1

dLeap(h∗)/2 ) as before gives the runtime of dLeap(h∗).

7 Concluding Remarks
In this paper, we’ve seen how a full dynamic analysis can prove new insights into the learning trajectory.
This analysis technique was also very useful in generalizing the result for the single monomial case to
the sum of monomials case, since we can iteratively condition on learning the lowest degree monomials.
Having a mix of lower degree and higher degree terms makes the learning of higher degree terms easier.
This is because the algorithm can first learn the lower degree terms quickly, which makes learning the
higher term degrees easier.

There is still a lot to explore in this direction. First, we haven’t touched much on how the martingale
term is analyzed in this project. Second, there are many caveats to the learning algorithm we used: We
have strong assumptions on the activation σ that do not hold with common activations like ReLU, and
we used projection terms that are not needed in practice. Finally, we have not looked at the training of
the second layer, which has many caveats due to our restriction of the weights to a small ∆-ball.
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