
CS 224 Fall 2023 Yuyang Zhang

Difficulties & Solutions in Learning Latent Variable
Models

1 Project Topic Overview

This report studies the problem of learning high-dimensional models with hidden
variables, with a special focus on Gaussian Mixture Models (GMM). The goal is to
present an algorithm framework that achieves quasi-polynomial dependence on
the hidden parameter size k, and to articulate the key insight as compared to other
literature that depends exponentially on k.

We will first review previous algorithms for GMM [SOAJ14] and explain intu-
itively their inherent exponential dependence on the hidden parameter k. We then
present the algorithm framework proposed in this work [DK20]. As compared to
the original paper, we largely reorganize the flow so that more focus is put on the
intuitions behind this method and connections to previous algorithms, instead of
including all the technical details. We also plan to carefully present the core of
their proof and highlight the key component that enables the quasi-polynomial
dependence.

The rest of the report is organized as follows. In Section 2, we formally introduce
the GMM model and learning target. In Section 3, we introduce and rephrase
a family of previous algorithms for GMM. In Section 4, the quasi-polynomial
algorithm framework is introduced. We decompose it into four steps, explain in
detail how every step is executed, and prove the efficiency and correctness. In
Section 5, we specifically focus on step 3, the construction of the small cover, of
the aforementioned algorithm framework. We discuss in great detail the reasons
and intuitions behind the recursive cover construction. Core proofs are presented.
Finally, Section 6 summarizes the report and points out several future directions.

1.1 Preliminary

For any integer k, let [k] = {1, . . . , k}. For any polynomial p, let ‖p‖ be its l2-
norm, and let Ap be the tensor s.t. p(x) = 〈Ap, x⊗degree(p)〉. Rm

[d] space of degree-d
polynomials defined on Rm. For any vector v, let ‖v‖ be its 2-norm. For any linear
subspace, let V⊥ be its orthogonal complement. Let co-dim be the abbreviation

1

for co-dimension. We use Õ to hide logarithmic factors and constants. For any
polynomial space P , we also use “variety” to denote the set of points where ∀p ∈ P
nearly vanishes (formally defined in Equation 33).

2 Problem Formulation

Throughout the first few sections, we will use the Gaussian mixture model (GMM)
as a motivating example. In fact, the methods will be extendable to other models,
including RELU networks, mixture of linear regressions, etc.

Definition 1 (Gaussian Mixture Model (GMM)). A Gaussian mixture model refers
to the following probability distribution, which is a k-Mixture of m-Dimensional
Spherical Gaussians

x ∼ F (x) :=
∑
i∈[k]

wiN (vi, Id), (1)

where ‖v‖i ≤ R, wi > 0 for some universal constant R and ∀i ∈ [k]. Moreover,∑
i∈[k] wi = 1. The parameters are summarized as follows

k,m,R, {wi}i∈[k], {vi}i∈[k]. (2)

For the rest of the report, we use polynomial to refer to polynomial in k,m,R and
ε, where ε is some small constant indicating the accuracy of the algorithm. We use
quasi-polynomial to refer to quasi-polynomial in k and polynomial in m,R, ε.

We first sample a datasetD = {xi}i∈[N] from distribution F , whereN is the count
of samples. Utilizing this dataset D, our target is density estimation, which we will
abbreviate as “learning” for simplicity. Namely, we want to output a hypothesis
distribution F̂ (D) such that the following holds with high probability

dTV(F̂ (D), F) ≤ Õ(ε). (3)

3 Previous Learning Algorithms

3.1 Direct Subspace Learning

Let’s first start with the following naive attempt. Let V be the space spanned by
{vi}i∈[k] with dimension k− ≤ k. From dataset D, we can easily estimate the second
moment M2 of the parameters {vi}i∈[k]

M2 =
∑
i∈[k]

wiviv
>
i =

∑
i∈[k]

wiv
⊗2
i . (4)

2

Solving for the column space of this matrix directly gives us the space V .
Now we construct an ε-cover of V , denoted by C = {c1, . . . , c|C|}. Notice that all

parameters {vi}i∈[k] lie in V , by definition. Therefore, for any i ∈ [k], there exist a
j(i) ∈ [|C|] such that ∥∥cj(i) − vi∥∥ ≤ ε. (5)

Based on this intuition, we construct the following hypothesis F̂

F̂ =

|C|∑
j=1

ŵjN (cj, I), (6)

and solve for the optimal distribution by some convex optimization techniques.
Under the optimal {ŵ∗j}

|C|
j=1, the F̂ ∗ should perform better than the following distri-

bution

k∑
i=1

wiN (cj(i), I). (7)

Since the above distribution is already very close to the original distribution F

(because cj(i) is very close to vi), our solution F̂ ∗ should be even closer and therefore
satisfies our requirement.

A lot of previous works developed algorithms based on this simple intuition.
However, this type of method suffers from an inherent difficulty. The ε-cover C
that we constructed is of size O(2k), since it covers the k-dimensional subspace V .
Therefore, our hypothesis is composed of O(2k) terms, and the convex optimization
problem takes time exponential in k.

3.2 Getting Rid of The Exponential Dependence on k

Previous work [DKS17] managed to show a lower bound of mΩ(k) on the com-
plexity of learning k-mixture of m-dimensional Gaussians. However, their lower
bound construction highly relies on non-spherical Gaussian distributions, but here
we are only considering spherical Gaussians. Namely, it is still possible to get
subexponential dependence on k.

The most straightforward idea is to adapt existing algorithms in related fields to
our setting. There actually exists polynomial time and sample algorithms based on
list-decodable learning of Gaussian distributions [DKS18, HL18, KSS18]. However,
all of these algorithms require the individual Gaussian distributions to be well
separated, which is not the case for our GMM.

3

Another idea is trying to construct smaller, i.e. subexponential-size, covers for
the set of possible mean vectors, which actually works to provide an algorithm with
quasi-polynomial time and sample complexity with the techniques in the following
sections.

3.3 Linear Variety Learning

Before going any further, we will first recast the aforementioned “direct subspace
learning” method (Section 3.1) in a more general way. We can actually think of it as
an algorithm learning a linear variety. Following this slightly different formulation,
this simple algorithm can then be extended towards quasi-polynomial time and
sample complexity.

The main steps of the “direct subspace learning” are summarized as follows,
assume we have access to the exact second moment M2 =

∑
i∈[k]wiv

⊗2
i :

• Solve for the null space of M2, i.e. V⊥.

• Construct the ε-cover for (V⊥)⊥ = V , denote as C = {ci}|C|i=1.

• Form hypothesis F̂ =
∑|C|

i=1 ŵiN (ci, I) and solve for the optimal {ŵ∗i }
|C|
i=1.

Here one may notice that the first and second lines can be combined as one step:
constructing an ε-cover for the column space of M2. Here we rephrase it in this
“tilted way” so that more intuitions can be drawn afterwards.

We now analyze the first step, which calculates an (m− k−)-dimensional sub-
space orthogonal to V , i.e. V⊥. Recall that there is a bijection between all vectors
in Rm and all degree-1 polynomials in Rm

[1]. To be more specific, for any vector
ṽ = (ṽ1, . . . , ṽm)> ∈ Rm, the corresponding polynomial is

pṽ(x) =
∑
i∈[m]

ṽixi. (8)

Now for ∀c ∈ V⊥, we know that

pc(v) =
∑
j∈[m]

cjvj = c>v = 0, ∀v ∈ V . (9)

Thus, pc(x) vanishes at all v ∈ V and therefore vanishes at the k points {vi}i∈[k].
Denote this set of polynomials as P = {pc(x),∀c ∈ V⊥}. Moreover, we can conclude
that P has dimension m− k−, or equivalently, has co-dim k−. This is because the
dimension of V⊥ is m−k−, and because the dimension of P equals the dimension of
V⊥ (which follows naturally from Equation 8). Therefore, the first step is rephrased:

4

Solving for the subspace of degree-1 polynomials with co-dim k− that vanishes on {vi}i∈[k].

We slightly overload the notation by letting the solution to the above step be P .
To rephrase the second step, we first prove that the variety of P is just the space V .
Firstly, the variety includes V . This is because for any v =

∑
i∈[k] αivi ∈ V , we have

pc(v) = c>v =
∑
i∈[k]

αic
>vi = 0, ∀pc ∈ P . (10)

On the other hand, the dimension of the variety is k−. To see this, notice that the
dimension of P equals the dimension of the following subspace

{c ∈ Rm : pc ∈ P}, (11)

which is m − k−. Moreover, notice that the variety of P is just the orthogonal
complement of the above subspace, which therefore has dimension m− (m− k−) =

k−. Combining the two parts shows that the variety of P is V . Since the second step
is to cover the space V , we naturally rephrase it as the following based on the above
intuition

Construct an ε-cover for the variety of P .

Denote the cover by C. Notice that points in cover C should approximate parameters
{vi}i∈[k] well, since they cover the whole space V . Therefore, we can use C to form
our hypothesis.

Finally, we list the rephrased steps as follows, assuming we have access to the
exact second moment M2 =

∑
i∈[k] wiv

⊗2
i :

• From M2, solve for P ⊂ Rm
[1] that vanishes on {vi}i∈[k] with dimension m− k−.

• Construct an ε-cover for the variety of P , denoted by C = {ci}|C|i=1.

• Form hypothesis F̂ =
∑|C|

i=1 ŵiN (ci, I) and solve for optimal parameters
{ŵ∗i }

|C|
i=1.

At this point, our objective is to construct a smaller ε-cover that covers the set of
points {vi}i∈[k]. Notice that we get this cover from the variety of the polynomial
space P . A natural idea is to construct a more complicated polynomial space P that
vanishes on {vi}i∈[k]. Intuitively, more complicated P leads to smaller variety. And
therefore fewer points are needed to cover this variety.

In the following sections, we prove that this idea actually works and leads to
algorithms with quasi-polynomial time and sample complexity.

5

4 The “Small Covers” Method

4.1 The Algorithm

It turns out that to get a small cover, it suffices to consider P ⊂ Rm
[d], i.e. degree-d

polynomials on Rm, where d is chosen to be log(k). This gives the following high-
level procedure, when we are given the exact 2d-th moment Md =

∑
i∈[k] wiv

⊗2d
i :

• From Md, get P ⊂ Rm
[d] vanishing on {vi}i∈[k] with co-dim at most k.

• Construct an ε-cover for the variety of P , denoted by C = {ci}|C|i=1.

• Form hypothesis F̂ =
∑|C|

i=1 ŵiN (ci, I) and solve for optimal parameters
{ŵ∗i }

|C|
i=1.

In real applications where Md is not directly available, the above algorithm is
directly extended with approximation techniques to be mentioned later. We then
have the following approximation algorithm

1. Approximate the d-th moment Md ≈
∑

i∈[k] wiv
⊗2d
i .

2. From Md, get P ⊂ Rm
[d] nearly vanishing on {vi}i∈[k] with co-dim at most k.

3. Construct an ε-cover for the set of points where P nearly vanishes, denoted by
C = {ci}|C|i=1.

4. Form hypothesis F̂ =
∑|C|

i=1 ŵiN (ci, I) and solve for optimal parameters
{ŵ∗i }

|C|
i=1.

For the rest of this section, we will give detailed explanations of how each step is
executed. Then we prove:

1. Every step can be finished within quasi-polynomial time.

2. Results of every step satisfy the corresponding requirements.

Some core proofs will be deferred to the next section.

4.2 Step 1: Estimating Moments

Let Hn(t), t ∈ R, n ∈ N denote the following probabilist Hermite polynomial

Hn(t) = (−1)net
2 dn

dtn
e−t

2

. (12)

6

We set the a-th entry of our moment estimation Md to be

1

N

N∑
n=1

 m∏
j=1

Haj(x
n
j)

 (13)

for every index tuple a = (a1, . . . , am) ∈ Nm with ‖a‖1 = 2d.
The construction comes from the following observation

∑
i∈[k]

wiv
a
i = Ex=(x1,...,xm)

 m∏
j=1

Haj(xj)

 . (14)

Here vai =
∏m

j=1 v
aj
i,j and x ∼ F follows the GMM defined in Equation 1. Intuitively,

this means that a-th entry of the tensor
∑

i∈[k] wiv
⊗2d

i can be well approximated by
averaging

∏m
j=1Haj(xj) of all samples. Then combining them together should result

in a good enough moment estimation.
To be more specific, with N = (Rmd)O(d)/δ2 samples from F , we can make sure

that the following holds∣∣∣∣∣∣
∑
i∈[k]

wiv
a
i −

1

N

N∑
n=1

 m∏
j=1

Haj(x
n
j)

∣∣∣∣∣∣ ≤ δ2 (15)

Therefore, as long as we have enough samples from distribution F , all entries of the
tensor can be well approximated.

Moreover, the estimations of all entries can be finished in quasi-polynomial time.
This is because we have at most O(m2d) = O(mO(log(k))) entries for the tensor, and
the estimation of every single entry takes polynomial time.

To conclude this subsection, we make the above claims formal by the following
lemma. We omit its proof because it is not closely related to the core of the “small
cover” method.

Lemma 1. With N = (Rmd)O(d)/δ2 samples from F , we can compute a tensor Md

with the a-th entry being 1
N

∑N
n=1

(∏m
j=1Haj(x

n
j)
)

that satisfies∥∥∥∥∥∥Md −
∑
i∈[k]

wiv
⊗2d

i

∥∥∥∥∥∥ ≤ O(δ) (16)

in time poly(N), i.e. in quasi-polynomial time.

7

4.3 Step 2: Approximating Polynomial Space P
Based on Md computed in the previous step, we construct P as follows. Consider
the following map Q : Rm

[d] → R:

Q(p) = 〈Ap2 ,Md〉. (17)

Let P ⊂ Rm
[d] be the subspace spanned by all but the top-k eigenvectors of Q(p).

This construction is pretty intuitive. By excluding the top-k eigenvector of
Q(p), we are left with a space of polynomials where Q(p) is very small. Notice
that Q(p) ≈

∑
i∈[k] wip

2(vi). Then it follows naturally that this space should nearly
vanish on {vi}i∈[k]. We then prove its efficiency and that it satisfies all requirements
in Step 2.

By construction, we know that P has codimension at most k. Moreover, we
can construct P in quasi-polynomial time. To see this, consider any degree-d
polynomial p =

∑
i α

i
ppi, where {pi} is a basis for Rm

[d] with size
(
m+d−1

d

)
and αp :=

(α1
p, . . . , α

(m+d−1
d)

p) is the coefficient. Then Q(p) is just the quadratic form of αp. This
implies that P can be solved by solving for the top-k eigenvectors of this quadratic
form, which can be solved within time polynomial in the dimension of αp. This
dimension is upper bounded by(

m+ d− 1

d

)
≤ (m+ d)d = O(m)log(k) (18)

due to our choice of d = log(k). Therefore, solving for P takes quasi-polynomial
time.

For the rest of this section, we prove P nearly vanishes on {vi}i∈[k].

Lemma 2. Given an accurate enough moment estimation Md satisfying∥∥∥∥∥∥Md −
∑
i∈[k]

wiv
⊗2d

i

∥∥∥∥∥∥ ≤ δ, (19)

P nearly vanishes on {vi}i∈[k] in the following sense

|p(vi)| ≤ O(

√
δ

wi
‖p‖), ∀i ∈ [k], ∀p ∈ P . (20)

Proof. To finish the proof, we need the following simple claim∥∥Ap2∥∥ ≤ ‖p‖2 . (21)

8

Now we prove that P satisfies our requirements (Equation 20) by contradiction.
Notice that for any p ∈ P ,

Q(p) = 〈Ap2 ,Md〉 = 〈Ap2 ,
∑
i∈[k]

wiv
⊗2d

i 〉+ 〈Ap2 ,Md −
∑
i∈[k]

wiv
⊗2d

i 〉

=
∑
i∈[k]

wi〈Ap2 , v
⊗2d

i 〉+ 〈Ap2 ,Md −
∑
i∈[k]

wiv
⊗2d

i 〉

=
∑
i∈[k]

wip
2(vi) +O(

∥∥Ap2∥∥
∥∥∥∥∥∥Md −

∑
i∈[k]

wiv
⊗2d

i

∥∥∥∥∥∥)

=
∑
i∈[k]

wip
2(vi) +O(δ ‖p‖2).

(22)

Suppose ∃p ∈ P such that Q(p) = Ω(δ ‖p‖2). Then for any p′ in the space spanned
by the top-k eigenvectors of Q, the following holds

Q(p′) = Ω(δ
∥∥p′∥∥2

). (23)

The existence of such p, together with the top-k eigenvectors of Q(p), implies that
the following space has co-dim at least k + 1:

S =

p ∈ Rm
[d] :

∑
i∈[k]

wip
2(vi) = 0

 . (24)

However, the co-dim of the above space is upper bounded by k, since there are at
most k constraints on this space, specified by every v ∈ {vi}i∈[k]. This leads to a
contradiction. Therefore, the following holds for ∀p ∈ P

Q(p) =
∑
i∈[k]

wip
2(vi) = O(δ ‖p‖2) ≥ wip

2(vi), ∀i ∈ [k]. (25)

which translates to

p(vi) ≤ O(

√
δ

wi
‖p‖), ∀i ∈ [k],∀p ∈ P . (26)

4.4 Step 3: Constructing ε-Cover for The “Variety” of P
Let C denote some large enough constant. For this subsection, fix a small constant
ε and choose δ = ε2d

(
ε

2Rkdm

)4Cd. Now we have polynomial space P such that the

9

following hold for all p ∈ P

p(vi) ≤ O(

√
δ

wi
‖p‖). (27)

Therefore, for all wi ≥ ε/k, we know that

|p(vi)| ≤ O

(
εd
(

ε

2Rkdm

)2Cd
√
k

ε
‖p‖

)
≤ O

(
εd
(

ε

2Rkdm

)Cd
‖p‖

)
. (28)

Let I = {i : wi ≥ ε/k}. We now try to find an ε-cover with quasi-polynomial size,
i.e. a small cover, for the following set S

S =

{
x ∈ Rm : ‖x‖ ≤ R and |p(x)| ≤ εd

(
ε

2Rdkm

)Cd
‖p‖ ,∀p ∈ P

}
. (29)

This is the subspace of Rm where all polynomials in P nearly vanish, which clearly
includes our parameters {vi}i∈[k]\I according to the construction of P . Covering this
subspace therefore gives us good approximations about those parameters. Other
parameters {vi}i∈I are not so important, because their coefficients are too small.

For simplicity, we defer the detailed construction of such small ε-covers to the
next section. Instead, in this subsection, we talk about the intuitions behind the
reason why there should exist a small cover with only quasi-polynomial size.

To see this, let’s consider a special case where δ = 0. Namely, we are given
polynomial space P∗ = {p ∈ Rm

[d] : p(vi) = 0, ∀i ∈ [k]}. Similarly, define S∗ to be the
following space where all polynomials in P∗ exactly vanish

S∗ =
{
x ∈ Rm : ‖x‖ ≤ R and |p(x)| = 0,∀p ∈ P∗

}
. (30)

Then it is clear that S∗ is just the variety of P∗ in the usual sense. Let Q∗ be the
space of degree-d polynomials defined on S∗. From basic algebraic geometry, we
know that Q∗ is isomorphic to Rm

[d]/P∗. Since P∗ has codimension at most k by
construction, we know that Rm

[d]/P , and therefore Q∗, has dimension at most k.
This fact is clearer when we consider the special case when d = 1 and the

co-dimension of P is at most k. Due to the bijection between all degree-1 one
polynomials p(x) =

∑
j∈[m] α

j
xxj and vectors αx = (α1

x, . . . , α
m
x), space P defines an

at least (m−k)-dimensional subspace of Rm, denoted by V⊥. Meanwhile, the variety
of P is all the vector v satisfying

∑
j∈[m] α

j
xvj = α>x v = 0. Therefore, the variety of P

is just the orthogonal complement of V⊥, i.e. V . It is clear that, from a linear algebra
perspective, V has dimension at most k. And again, due to the bijection between

10

degree-1 polynomials and vectors, the space of degree-1 polynomials defined on V
is defined as follows p : p =

∑
j∈[m]

αjxj, ∀α ∈ V

 , (31)

which has dimension at most k.
Now that the fact dim(Q∗) ≤ k is clear, we use it to upper bound dim(S∗). Since

the space of all degree-d polynomials on S∗ has dimension
(

dim(S∗)+d−1
d

)
, we know(

dim(S∗) + d− 1

d

)
≤ k. (32)

This implies dim(S∗) = O(dk1/d). Therefore, to cover the space S∗, one may expect
the size of the cover to be exponential in O(dk1/d). By letting d = log(k), we get a
quasi-polynomial-sized cover.

The following lemma formalizes all the above intuitions, whose proof is deferred
to the next section.

Lemma 3. Let C be some large enough constant. Fix a small constant ε. Given P
from step 2 with δ = ε2d

(
ε

2Rkdm

)4Cd. Consider the following space S

S =

{
x ∈ Rm : ‖x‖ ≤ R and |p(x)| ≤ εd

(
ε

2Rdkm

)Cd
‖p‖ ,∀p ∈ P

}
. (33)

There exists an ε-cover of S with size at most (2Rdkm/ε)C
2d2k1/d .

4.5 Step 4: Optimizing Hypothesis F̂

With the quasi-polynomial-sized cover C = {c1, . . . , c|C|} from previous subsection,
we form our hypothesis as follows

F̂ =
∑
j∈|C|

ŵjN (cj, I), (34)

Since C covers the variety of P , which includes {vi}i∈[k], we know that F̂ approxi-
mates F well for some coefficients {ŵi}i∈[|C|]. Denote the set of all possible F̂ ’s with
coefficients “not too small” (which will be formally defined later) as ∆, which is a
convex set. We then try to optimize over ∆ for the best possible distribution.

We first make the following definitions for any distribution f with the same
support as F and sample x ∼ F

L(f, x) := log(f(x)), L(f) := Ex∼F [L(f, x)] = D(F ||f) +H(F). (35)

11

Here D(F ||f) denotes the KL-divergence between F and f , and H(F) denotes the
entropy. Our final hypothesis is then chosen to be the minimizer of the following
optimization problem

F̂ = min
f∈∆

1

N

N∑
n=1

L (f, xn) . (36)

Now we give intuition behind the above optimization problem. From definition,
we know that 1

N

∑N
n=1 L (f, xn) is the empirical estimator ofL(f). Thanks to the low-

dimensionality of ∆ (quasi-polynomial), we know that with quasi-polynomially
many samples, 1

N

∑
n∈[N] L(f, xi) approximates L(f) well for every single f ∈ ∆.

On the other hand, if f and F are close, the D(F ||f) should be small. And therefore
L(f) should also be small. With good estimates of L(f), we can directly choose the
best f that minimizes L(f) as our estimation F̂ , which naturally leads to a good
approximation of the original distribution.

We now formally prove its efficiency and correctness. From previous literature
[DSS18], we know that this problem can be solved up to error ε within polynomial
time. The correctness is established by the following Lemma

Lemma 4. Given a quasi-polynomial-sized cover C = {c1, . . . , c|C|} that satisfies the
following for ∀i ∈ [k]\I

∃j, s.t.
∥∥cj − vi∥∥ ≤ ε. (37)

Recall here I = {i : wi ≥ ε/k}. Then with N = O(|C|/ε2) samples, i.e. quasi-
polynomially many samples, we can calculate a distribution F̂ within polynomial
time such that

dTV(F̂ , F) ≤ O(

√
ε log(

|C|
ε

)). (38)

Proof. Let ∆ = {f : f =
∑

j∈|C|wjN (cj, I),
∑

j∈|C|wj = 1,wj > ε/k, ∀{wj}j∈[|C|]},
which contains all possible Gaussian mixtures constructed from cover C with coeffi-
cients not too small.

For simplicity of the proof, we claim without proving the following fact. For any
pair p, q ∈ ∆, one necessary condition of the following equality

L̂(p)− L̂(q) :=
1

N

N∑
n=1

L (p, xn)− 1

N

N∑
n=1

L (q, xn)

= L(p)− L(q) +O(ε log(|C|/ε))

(39)

12

is that the following quantity is at most quasi-polynomial for all {ai}i∈[|C|]

VC


∑
i∈[|C|]

aipi(x),∀x ∈ Rm


 . (40)

Here VC(A) denotes the VC-dimension of setA, pi denotes the distributionN (ci, I).
Intuitively, to accurately approximate L̂(p)− L̂(q) for every pair p, q ∈ ∆ with only
quasi-polynomial number of samples, we need space ∆ to not too complicated.
The “complexity” of ∆ is measured by the VC-dimension of the linear combination
of its basis {pi, i ∈ [|C|]}. As long as this complexity is quasi-polynomial, quasi-
polynomially many samples will be enough to approximate L(p)− L(q) for every
pair p, q ∈ ∆1.

In fact, the above VC-dimension equals O(|C|). To see this, let’s do the following
change of variable: x→ (p1(x), . . . , p|C|(x)). Then the above set becomes the set of
all halfspaces in R|C|, which has VC-dimension O(|C|). In our case, this quantity is
quasi-polynomial. Therefore, Equation 39 holds.

For the rest of this subsection, we will use Equation 39 to finish the proof of this
Lemma. We first show that there exists a distribution f in ∆ such that

dTV(f, F) ≤ 2ε. (41)

Choose {ŵj}j∈[|C|] as follows. For all i ∈ [k] with wi > ε/|C|, set ŵj = wi for any one
of the j’s satisfying

∥∥cj − vi∥∥ ≤ ε. Denote this index j by j(i). Set all other ŵj’s to
zero. Denote the distribution with this set of coefficients as f ∗. For all i ∈ [k] with

1Formal proof of this claim is in the proof of Proposition 28 in [DK20]

13

wi ≤ ε/|C|, let them form set I. Then we have

dTV(f ∗, F) = dTV

∑
j∈|C|

wjN (cj, I), F


= dTV

 ∑
i∈[k]\I

wiN (cj(i), I),
∑
i∈[k]

wiN (vi, I)


≤

∑
i∈[k]\I

widTV
(
N (cj(i), I),N (vi, I)

)
+
∑
i∈I

wi

(i)

≤
∑
i∈[k]\I

wi

√
1

2
dKL(N (cj(i), I),N (vi, I)) + ε

=
∑
i∈[k]\I

wi

√
1

2

∥∥cj(i) − vi∥∥2
+ ε

≤
∑
i∈[k]\I

wiε+ ε ≤ 2ε.

(42)

Here (i) is from Pinsker’s inequality.
Finally, we show the output of our optimization problem (Equation 36), denoted

by f̂ , is close enough to f ∗. In polynomial time, we have the following for ∀f ∈ ∆

L̂(f̂) ≤ L̂(f) + ε ⇐⇒ L̂(f̂)− L̂(f) ≤ ε. (43)

Take f = f ∗, and from Equation 39, we have

L(f̂)− L(f ∗) ≤ L̂(f̂)− L̂(f ∗) +O(ε log(|C|/ε)) ≤ O(ε log(|C|/ε)). (44)

This finishes the proof.

5 Existence of The Small Cover

5.1 Intuition for Proof of Lemma 3

Given a space of degree-d polynomials P , which is defined on Rm with co-dim at
most k. Let S be defined as in Equation 33. Let f(k, d,m, ε) denote the size of the
ε-cover for S , which we aim to upper bound. The proof is finished via induction on
k + d+m. For simplicity, here we omit the proof for the base case.

14

At every induction step with k + d+m = I , we assume the following holds for
all k′ + d′ +m′ ≤ I − 1 and any ε

f(k′, d′,m′, ε) ≤ (2Rd′k′m′/ε)C
2(d′)2(k′)1/(d

′)
. (45)

And we prove the following for any (k, d,m) s.t. k + d+m = I and any ε

f(k, d,m, ε) ≤ (2Rdkm/ε)C
2d2k1/d . (46)

Now for any (k, d,m), we want to cover the points x ∈ Rm where all polynomials
p ∈ P nearly vanish. We first decompose Rm into Rm′ × Rm−m′ , where Rm′ is the
space of the first m′ coordinates. We will specify the value for m′ later. Instead of
considering all polynomials in P , we only consider the polynomials in P that are
degree-1 in the first m′ coordinates, denoted by Pm−m′ . Namely, we cover a point
as long as a smaller set of polynomials, i.e. Pm−m′ ⊂ P , vanishes on it. This only
enlarges our cover without losing anything. Notice here the co-dimension of Pm−m′
in Rm−m′

[d−1] is still upper bounded by k, otherwise the co-dimension of P would have
been greater than k, which contradicts with the definition of P .

To construct the cover, we first brute-forcely covering space Rm′ . For ∀x in our
cover of Rm′ , we consider the corresponding polynomial space Pm−m′(x), where
every polynomial is calculated by taking the corresponding polynomial in Pm−m′
and evaluating its first m′ coordinates on x. Now we need to find points in cylinder
{x}×Rm−m′ where all polynomials in Pm−m′(x) vanishes, and cover them. The size
of points in this cylinder is then f(k, d − 1,m −m′, ε) by definition. This “simple
one-step recursion” establishes many of the intuitions we needed for the induction.
However, there are several points that need to be discussed.

5.1.1 More on The “Simple One-Step Recursion”

At this point, one may wonder:

What if all polynomials in Pm−m′ vanishes when evaluating its first m′

coordinates on x?

When this happens, indeed, we need to cover the entire cylinder {x} × Rm−m′ ,
which gives cover size exponential in m −m′ ≈ m, and fails our attempt to find
small covers. But in fact, this will never happen. If the entire space Pm−m′ vanishes
on x, then the space of degree-(d− 1) polynomials defined on the variety of Pm−m′
will have the same dimension as Rm−m′

[d−1] , which is much larger than k itself. This
contradicts with the fact that co-dimension of Pm−m′ is upper bounded by k.

Another important point to note is that:

15

Simply repeating the above recursion is not enough!

To see this, we can directly write out the one-step recursion

f(k, d,m, ε) =

(
R

ε

)m′
f(k, d− 1,m−m′, ε). (47)

Here the first factor comes from brute-forcely cover the space of the first m′ coordi-
nates. Applying this inequality for d− 1 steps gives

f(k, d,m, ε) =

(
R

ε

)m′(d−1)

f(k, 1,m−m′, ε). (48)

Now applying the induction hypothesis on f(k, 1,m−m′, ε) gives

f(k, d,m, ε) =

(
R

ε

)m′(d−1)(
2Rdkm

ε

)C2k

. (49)

This gives an upper bound of f(k, d,m, ε) which is still exponential in k. This
implies that this simple “one-step recursion” ruins our efforts. We need to be more
careful when considering the new (d− 1)-degree polynomial space and its ε-cover.

5.1.2 A More Sophisticated Recursion

When covering Rm′ , we split all x’s in this cover into two parts. For the good points,
we require the co-dimension of the new polynomial space Pm−m′(x) to decrease
to at most k′ = k1−1/d. Intuitively, since we are reducing the number of variables,
less freedom is granted to the polynomials, and therefore dimension of the variety
space we are covering should also be reduced. Otherwise, the point x doesn’t tell
us much about the variety space. In other words, the “information gain” is small
from this specific point. We call such points where co-dim

(
Pm−m′(x)

)
> k1−1/d bad

points.
Clustering the good and bad points gives

f(k, d,m, ε) =

(
R

ε

)m′
f(k1−1/d, d− 1,m−m′, ε)

+ #
(
cover for the cylinders of bad points

)
.

(50)

16

If we ignore the second term, after d− 1 steps, the first term decreases to(
R

ε

)m′(d−1)

f(k1/d, 1,m− dm′, ε)

(i)

≤
(
R

ε

)m′(d−1)(
Rkdm

ε

)k1/d
≤ 1

2m

(
Rkdm

ε

)dmax{k1/d,m′}

,

(51)

which is no longer a problem. Here (i) is from the induction hypothesis.
On the other hand, we can show that the bad points actually concentrate together,

which makes the second term small. Then combining the two terms finishes the
induction and therefore finishes the proof of this lemma.

5.2 Proof of Lemma 3

Now we upper bound the second term in Equation 50, i.e. the cover size needed for
the cylinders associated with the “bad points”. This, combined with Equation 50,
almost finishes the induction. To do this, we first show that bad points concentrate
around a 2dk1/de-dimensional hyperplane

Lemma 5 (A rough version of Lemma 22 in [DK20]). There exists a subspace
H ∈ Rm′ with dimension at most 2dk1/de so that all the bad points are close to H .

5.2.1 Rough Intuition for Lemma 5

The proof is finished by contradiction. We now talk about the intuition behind it. If
there doesn’t exist such hyperplane H , there must exist many bad xi’s such that xi
is far from the span of {x1, . . . , xi−1}. Here i ∈ [d2k/k′e].

For every xi, we can at least find k′ = k1−1/d different polynomials orthogonal
to polynomials in Pm−m′(xi). This is due to the definition of “bad points”. One
important fact is that:

From these polynomials, we can construct a k′ · d2k/k′e-dimensional polynomial
space that is almost orthogonal to polynomials in Pm−m′ .

Denote the above polynomial space as Q. On the other hand, notice that this
polynomial space has dimension lower bounded by 2k/k′ ∗ k′ = 2k > k. Since
the co-dimension of Pm−m′ is small (at most k), there must exist some polynomial
p ∈ Pm−m′ that also lies Q. Since all polynomials in Q are almost orthogonal to
polynomials in Pm−m′ , this specific p must be almost orthogonal to itself, which
causes a contradiction.

17

5.2.2 A Rough Proof of Lemma 5

Let t denote 2dk1/de. If there doesn’t exist such hyperplane H , as a simplifying
assumption, we assume that we can find orthonormal vectors {x1, . . . , xt} such
that the variety of Pm−m′(xi) has co-dimension at least k′ = k1−1/d for all i ∈ [t]
2. Namely, for every such xi, we can find orthogonal degree d − 1 polynomials
{pi,1, . . . , pi,k′} such that∥∥pi,j∥∥ = 1, 〈pi,j, p〉 = 0,∀p ∈ Pm−m′(xi). (52)

With {pi,j}, we now define the following polynomials {Bi,j}

Bi,j(x, y) = (x>i x)pi,j(y) := qi(x)pi,j(y), x ∈ Rm′ , y ∈ Rm−m′ . (53)

It is then clear (from Claim 21 in [DK20]) that

〈Bi1,j1 , Bi2,j2〉 =
1

d
〈qi1 , qi2〉〈pi1,j2 , pi2,j2〉 = 0, ∀(i1, j1) 6= (i2, j2),

〈Bi,j, Bi,j〉 =
1

d
〈qi, qi〉〈pi,j, pi,j〉 ≥

1

d
, ∀(i, j).

(54)

For any polynomial p ∈ Pm−m′ and any i ∈ [t], we decompose it as p =

qi(x)py(y) +
∑

p̃x
p̃x(x)p̃y(y) where p̃x are degree-1 polynomials on Rm′ orthogo-

nal to qi. Therefore, we know that 〈p,Bi,j〉 = 1
d
〈qi, qi〉〈py, pi,j〉. On the other hand, py

can be viewed as the polynomial got from p by evaluating the first m′ coordinates
on point xi. This gives 〈py, pi,j〉 = 0, i.e.

〈p,Bi,j〉 = 0, ∀p ∈ Pm−m′ . (55)

On the other hand, notice that space Pm−m′ has codimension at most k. However,
the polynomial space spanned by {Bi,j} has dimension t · k′ ≥ 2k > k. Therefore,
there must exist some polynomial p ∈ Pm−m′ that can be written as p =

∑
i,j αi,jBi,j .

For this specific polynomial p, we know that there exist some (i, j) such that

〈p,Bi,j〉 ≥ αi,j > 0. (56)

This inequality contradicts with Equation 55. Therefore, there must exist such
hyperplane H with dimension at most t.

2We refer the readers to the original paper for a more rigorous proof. However, following this
simplifying assumption, the proof captures most of the essence of the original one.

18

5.2.3 Finishing The Recursion

With the above lemma, the space spanned by all the bad points and their cylinders
has dimension m−m′ + 2dk1/de. We need to cover points in this new space where
the set of degree-d polynomial vanishes. Note that here we don’t brute-forcely cover
the bad points. Instead, we cluster them and their cylinders together to form a new
space with lower dimension. And therefore the degree of the polynomial space
doesn’t decrease.

Now we are in the position to complete the induction. From the above lemma,
we know that

#
(
cover for the cylinders of bad points

)
= f(k, d,m−m′ + d2k1/de, ε). (57)

We choose m′ = d3k1/de so that m−m′ + d2k1/de ≤ m− 1. Therefore,

#
(
cover for the cylinders of bad points

)
≤ f(k, d,m− 1, ε). (58)

Plugging back into Equation 50 gives

f(k, d,m, ε) =

(
R

ε

)m′
f(k1−1/d, d− 1,m−m′, ε) + f(k, d,m− 1, ε)

(i)

≤
(
R

ε

)m′ (
2Rdk1−1/dm

ε

)C2(d−1)2(k1−1/d)
1

d−1

+

(
2Rdk(m− 1)

ε

)C2(d−1)2k1/d

≤
(
R

ε

)3k1/d
(

2Rdk1−1/dm

ε

)C2(d−1)2k1/d

+

(
(1− 1

m
)
2Rdkm

ε

)C2d2k1/d

≤
(

2Rdkm

ε

)C2(d2−d)k1/d

+

(
(1− 1

m
)
2Rdkm

ε

)C2d2k1/d

≤ 1

2m

(
2Rdkm

ε

)C2d2k1/d

+ (1− 1

m
)

(
2Rdkm

ε

)C2d2k1/d

(59)

Finally, combining the terms gives

f(k, d,m, ε) ≤
(

2Rdkm

ε

)C2d2k1/d

, (60)

which finishes the proof!

19

5.3 Algorithm to Construct The Small Cover

Algorithm 1: Construct The Small Cover of P on Rm with Paramters k, d,m
Init: k, d,m, m′ ← 3dk1/de, k′ ← k1−1/d, Polynomial Space P ;

1 if d = 1 then
2 Directly solve for the “variety” of P on Rm;
3 Construct a naive ε-cover for Rm′ defined by the first m′ coordinates,

denoted by C̃;
4 Cluster the good points and bad points in C̃;
5 for x is a good point do
6 P̃ ← Pm−m′(x);
7 Construct The Small Cover of P̃ on Rm−m′ with Parameters

k′, d− 1,m−m′, denoted by C̃x;
8 Construct the hyperplane H close to all bad points;
9 Construct The Small Cover of P on H × Rm−m′ with Parameters k, d,m− 1,

denoted by C̃bad;
10 Return {C̃x}x is a good point ∪ C̃bad;

From the above induction procedure, we automatically get the algorithm for
constructing small covers for S . Here line 2 is solvable because when d = 1, solving
for the “variety” of P is equivalent to solving for a linear space (as discussed in
Section 3.1). It is clear that the algorithm can run within time polynomial in the size
of the cover, which is quasi-polynomial.

6 Conclusions & Future Directions

In this report, we start from a popular method in previous literature, which can be
seen as calculating the variety for some degree-1 polynomial space. This type of
method has an inherent exponential dependence on k. Using ideas from [DK20],
we know that by extending the algorithm to calculate the variety for some higher-
degree polynomial space, we can get an algorithm with quasi-polynomial sample
and time complexity.

It is intriguing to look for polynomial algorithms in related fields based on the
current method. One way to achieve this is to combine the small cover method with
the techniques mentioned in [LL22]. Another approach is to go beyond the Method
of Moments and try other techniques including Fourier moments [CLS20], etc.

20

7 Acknowledgments

I would like to express my sincere gratitude to Sitan for scheduling extra office
hours to answer my questions and providing many intriguing research ideas in
related fields. Also, I am grateful to my friend Tianqi Liu for patiently answering
my elementary algebraic geometry questions.

References

[CLS20] Sitan Chen, Jerry Li, and Zhao Song. Learning mixtures of linear re-
gressions in subexponential time via fourier moments. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages
587–600, 2020.

[DK20] Ilias Diakonikolas and Daniel M Kane. Small covers for near-zero sets
of polynomials and learning latent variable models. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 184–
195. IEEE, 2020.

[DKS17] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query
lower bounds for robust estimation of high-dimensional gaussians and
gaussian mixtures. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 73–84. IEEE, 2017.

[DKS18] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable
robust mean estimation and learning mixtures of spherical gaussians.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1047–1060, 2018.

[DSS18] Ilias Diakonikolas, Anastasios Sidiropoulos, and Alistair Stewart. A
polynomial time algorithm for maximum likelihood estimation of multi-
variate log-concave densities. arXiv preprint arXiv:1812.05524, 2018.

[HL18] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of
squares proofs. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1021–1034, 2018.

[KSS18] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. Robust moment
estimation and improved clustering via sum of squares. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
1035–1046, 2018.

21

[LL22] Allen Liu and Jerry Li. Clustering mixtures with almost optimal separa-
tion in polynomial time. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1248–1261, 2022.

[SOAJ14] Ananda Theertha Suresh, Alon Orlitsky, Jayadev Acharya, and Ashkan
Jafarpour. Near-optimal-sample estimators for spherical gaussian mix-
tures. Advances in Neural Information Processing Systems, 27, 2014.

22

	Project Topic Overview
	Preliminary

	Problem Formulation
	Previous Learning Algorithms
	Direct Subspace Learning
	
	Linear Variety Learning

	The ``Small Covers'' Method
	The Algorithm
	Step 1: Estimating Moments
	
	
	

	Existence of The Small Cover
	Intuition for Proof of Lemma 3
	More on The ``Simple One-Step Recursion''
	A More Sophisticated Recursion

	Proof of Lemma 3
	Rough Intuition for Lemma 5
	A Rough Proof of Lemma 5
	Finishing The Recursion

	Algorithm to Construct The Small Cover

	Conclusions & Future Directions
	Acknowledgments

